Search
Search Results
-
28831. [Image] Gerber-Willow Valley Watershed Analysis
x, 386 p., ill., maps (some col.); Cover title; "July 2003"Citation Citation
- Title:
- Gerber-Willow Valley Watershed Analysis
- Author:
- U.S. Department of the Interior. Bureau of Land Management; Klamath Falls Resource Area Office; U.S. Department of Agriculture. Forest Service; Fremont-Winema National Forests; Modoc National Forest
- Year:
- 2003, 2006, 2005
x, 386 p., ill., maps (some col.); Cover title; "July 2003"
-
"May 2000"; From cover: Prepared for U.S. Department of Agriculture/Natural Resources Conservation Service, 2316 South 6th Street, Suite C, Klamath Falls, Oregon 97601. In Partnership with The Nature Conservancy, ...
Citation Citation
- Title:
- Williamson River delta restoration project : environmental assessment
- Year:
- 2000, 2005
"May 2000"; From cover: Prepared for U.S. Department of Agriculture/Natural Resources Conservation Service, 2316 South 6th Street, Suite C, Klamath Falls, Oregon 97601. In Partnership with The Nature Conservancy, 821 SE 14th Avenue, Portland, Oregon 97214 and US Fish and Wildlife Service, US Bureau of Reclamation, Klamath Tribes, PacifiCorp, Cell Tech International; Includes bibliographic references (p. 60-66)
-
28833. [Image] School-based Klamath River restoration project, phases V, VI & VII, 319h Clean Water Act
ABSTRACT Phase VI of the School-Based Klamath Restoration Project (319h) is a collaborative effort between seven Siskiyou County schools, the Siskiyou County Office of Education (SCOE), and the United ...Citation Citation
- Title:
- School-based Klamath River restoration project, phases V, VI & VII, 319h Clean Water Act
- Author:
- Rilling, Trudy S.
- Year:
- 2000, 2005
ABSTRACT Phase VI of the School-Based Klamath Restoration Project (319h) is a collaborative effort between seven Siskiyou County schools, the Siskiyou County Office of Education (SCOE), and the United States Fish and Wildlife Service (USFWS). The objectives of the project include: ? Expanding hands-on field science watershed education. ? Encouraging a sense of resource stewardship among students at all grade levels. ? Collecting quality data for inclusion in the 319h data base. ? Teaching applications of the scientific method. ? Providing on-going inservice training for teachers to increase the effectiveness of the project. Project tasks that were completed include acquisition and analysis of Klamath River Watershed Data, including river water temperatures, river cross sectional profiles and spawning ground surveys. Descriptions of methodology are included in the report. Many other watershed-related projects were undertaken by schools. In some cases the field data was collected and compiled by agency personnel. The spawning ground survey data collected by student volunteers was part of a project conducted by the California Department of Fish and Game and the U.S. Forest Service. Although a substantial amount of excellent work has been accomplished by the schools, the opportunity exists to improve the program at all levels. Increased field and technical support is needed to successfully integrate the goals of the project. Computer training for teachers and students is an essential component of the project, which would allow analysis of data and creation of web sites within classrooms. Data analysis and reporting is the critical component of the project that would provide students with a complete understanding of scientific research methodology. Providing a forum for communication between the 319h participants is another important area of the project that needs to be expanded. Travel time, mountainous topography, and intense winter storms can be barriers to travel in Siskiyou County. Communication helps to increase the level of standardization of data collection and transfer and gives teachers a chance to share successful ideas. Communication also sustains the positive momentum of the project, reinforcing the idea of working as a team towards establishing common goals for watershed education.
-
28834. [Image] Histopathological changes in gills of Lost River suckers (Deltistes luxatus) exposed to elevated ammonia and elevated pH
Lease, Hilary M., Histopathological Changes in Gills of Lost River Suckers (Deltistes luxatus) Exposed to Elevated Ammonia and Elevated pH, M.S., Department of Zoology and Physiology, December, 2000. ...Citation Citation
- Title:
- Histopathological changes in gills of Lost River suckers (Deltistes luxatus) exposed to elevated ammonia and elevated pH
- Author:
- Lease, Hilary Marian
- Year:
- 2000, 2008, 2005
Lease, Hilary M., Histopathological Changes in Gills of Lost River Suckers (Deltistes luxatus) Exposed to Elevated Ammonia and Elevated pH, M.S., Department of Zoology and Physiology, December, 2000. The Lost River sucker {Deltistes luxatus) is a federally listed, endangered fish species endemic to Upper Klamath Lake?a large, shallow hypereutrophic lake in southern Oregon. Sucker population declines in the lake over the past few decades are thought to be partly attributable to extreme water quality conditions, including elevated ammonia concentrations and elevated pH, that occur during summer cyanobacterial blooms. I analyzed structural changes in gills of larval Lost River suckers after they were exposed to elevated pH and elevated ammonia concentrations in chronic toxicity tests conducted in the laboratory. Histopathological changes in sucker lamellae were observed at ammonia concentrations that did not significantly decrease survival, growth, whole-body ion content, or swimming performance. Structural changes that I evaluated included O2 diffusion distance, lamellar thickness, hyperplasic and hypertrophic mucous cells, and infiltration of white blood cells into the lymphatic space. The increases in diffusion distance and lamellar thickness were statistically significant (P < 0.05). These gill changes are indicative of potentially compromised respiratory and ionoregulatory capacity. Because in this species gill structural changes appear to be a more sensitive indicator of stress in eutrophic water quality conditions than are the more traditional sublethal indices, gill histopathology might be useful for monitoring the health of Lost River suckers in Upper Klamath Lake.
-
28835. [Image] Trinity River Flow Evaluation: final report: a report to the Secretary , U.S. Department of the Interior
TRINITY RIVER FLOW EVALUATION - FINAL REPORT EXECUTIVE SUMMARY When Congress authorized construction of the Trinity River Division (TRD) of the Central Valley Project (CVP) in 1955, the expectation was ...Citation Citation
- Title:
- Trinity River Flow Evaluation: final report: a report to the Secretary , U.S. Department of the Interior
- Author:
- U.S. Fish and Wildlife Service; Arcata Fish and Wildlife Office; Hoopa Valley Tribe
- Year:
- 1999, 2006, 2005
TRINITY RIVER FLOW EVALUATION - FINAL REPORT EXECUTIVE SUMMARY When Congress authorized construction of the Trinity River Division (TRD) of the Central Valley Project (CVP) in 1955, the expectation was that surplus water could be exported to the Central Valley without harm to the fish and wildlife resources of the Trinity River. The TRD began operations in 1963, diverting up to 90 percent of the Trinity River's average annual yield at Lewiston, California. Access to 109 river miles of fish habitat and replenishment of coarse sediment from upstream river segments were permanently eliminated by Lewiston and Trinity Dams. Within a decade of completing the TRD, the adverse biological and geomorphic responses to TRD operations were obvious. Riverine habitats below Lewiston Dam degraded and salmon and steelhead populations noticeably declined. In 1981, the Secretary of the Interior (Secretary) directed that a Trinity River Flow Evaluation (TRFE) study be conducted to determine how to rest
-
28836. [Image] Forestry program for Oregon
This document sets forth the Board of Forestry's strategic vision for Oregon's forests for the next eight yearsCitation -
-
SIGNIFICANT FINDINGS The distribution of SOD2q values (measured sediment oxygen demand values corrected to 20°C [degrees Celsius]) had a median value of 1.6 g/m2/day (grams per square meter per day) in ...
Citation Citation
- Title:
- Sediment oxygen demand in Upper Klamath and Agency Lakes, Oregon, 1999
- Author:
- Wood, Tamara M.
- Year:
- 2001, 2005, 2004
SIGNIFICANT FINDINGS The distribution of SOD2q values (measured sediment oxygen demand values corrected to 20°C [degrees Celsius]) had a median value of 1.6 g/m2/day (grams per square meter per day) in the spring and 1.7 g/m2/day in the late summer. These values were well within the range of values in the literature for sites with similar sediment characteristics: primarily silty with at least a moderate amount of organic content. Over most of the lake there appears to be relatively little variation in SOD 14the interquartile range in values was 0.4 g/m2/day in the spring and 0.7 g/m2/day in the late summer. A significant exception was apparent in Ball Bay, where SOD in the late summer was greater than 10.2 g/m2/day. In the absence of primary production, an SOD of this magnitude could deplete the water column of oxygen in a few days. This measurement provided evidence that localized areas of very high SOD occur episodically in the bays, perhaps associated with large algal mats being trapped by the lake circulation patterns. A statistical test for a spring to late summer difference in the median values of SOD confirmed that SOD in the late summer (median value 1.7 g/m2/day) was significantly higher than in the spring (median value 1.2 g/m2/day). The difference was primarily due to seasonal changes in temperature; when SOD values were corrected to 20°C, there was no seasonal difference in the median values. There was no correlation between SOD20 and the sediment characteristics measured in this study: percent fines, organic carbon, and residue lost on ignition.
-
19p.; ill.; Cover title; "June 1997"; "Reprint September 1998"; [Washington, D.C.]: Supt. of Docs., U.S. G.P.O., 1999
Citation -
28840. [Image] Ecology of shortnose and Lost River suckers in Tule Lake National Wildlife Refuge, California : progress report, April - November 1999
Ecology of shortnose and Lost River suckers in Tule Lake National Wildlife Refuge, California, Progress Report, April - November 1999 Lisa A. Hicks, U. S. Fish and Wildlife Service, Klamath Basin National ...Citation Citation
- Title:
- Ecology of shortnose and Lost River suckers in Tule Lake National Wildlife Refuge, California : progress report, April - November 1999
- Author:
- Hicks, Lisa A.; Mauser, David M.; Beckstrand, John; Thomson, Dani
- Year:
- 2000, 2005
Ecology of shortnose and Lost River suckers in Tule Lake National Wildlife Refuge, California, Progress Report, April - November 1999 Lisa A. Hicks, U. S. Fish and Wildlife Service, Klamath Basin National Wildlife Refuge, Route 1, Box 74, Tulelake, CA 96134 David M. Mauser, U. S. Fish and Wildlife Service, Klamath Basin National Wildlife Refuge, Route 1, Box 74, Tulelake, CA 96134 John Beckstrand, U. S. Fish and Wildlife Service, Klamath Basin National Wildlife Refuge, Route 1, Box 74, Tulelake, CA 96134 Dani Thomson, U. S. Fish and Wildlife Service, Klamath Basin National Wildlife Refuge, Route 1, Box 74, Tulelake, CA 96134 Introduction The Lost River ( Deltistes luxatus) and shortnose ( Chasmistes brevirostris) suckers were federally listed as endangered species on July 18, 1988 ( Federal Register 53: 27130- 27134). Both sucker species are relatively long- lived, have a limited geographic range, and are endemic to the Upper Klamath Basin of Northern California and Southern Oregon. Habitat degradation from water diversions and loss of riparian and wetlands habitats associated with agricultural development within their historic range is believed to be the major reason for the species decline ( U. S. Fish and Wildlife Service 1993). A more detailed description on the life history, habitat requirements, and causes of decline of the species can be found in the Lost River and Shortnose Sucker Recovery Plan ( U. S. Fish and Wildlife Service 1993). Tule Lake National Wildlife Refuge ( NWR), established in 1928, consists of 2 return flow sumps ( Sump 1( A) and 1( B)) totaling 13,000 acres surrounded by 17,000 acres of intensively farmed lands ( Fig. 1). The refuge and surrounding private agricultural lands occupy the historic lake bed of Tule Lake, a 95,000 acre lake and marsh area that was reclaimed in the early 1900fs as part of the Klamath Reclamation Project. Current management of the refuge is directed by the Kuchel Act of 1964 which mandates the refuge be managed for the major purpose of waterfowl management but with optimal agricultural use that is consistent therewith. Both sumps are shallow ( 0.1 - 2.0 m) and consist of approximately 10,500 acres of open water with a 2,500 acre shallow (< 0.1 m) emergent marsh at the northeast corner of Sump 1( A). Tule Lake has been identified as a potential refugia for both sucker species ( U. S. Fish and Wildlife Service 1993). Tule T like National Wildlife Sump 3 Lease lands Field . Station Cocbetative Fanning Fields Area J Lease Lands Sump 2 I ease I , ands Figure 1. Tule Lake National Wildlife Refuge, California. During winter, water within the sumps is comprised primarily of local runoff and during summer water is comprised primarily of irrigation return flows, originating from Upper Klamath Lake. Summer water quality in the sumps is similar to other water bodies within the Upper Klamath Basin and is considered hypereutrophic ( Dileanis et al. 1996). Water quality problems include low dissolved oxygen ( DO) and high hydrogen ion concentrations ( pH) and unionized ammonia. Water quality in the Tule Lake sumps is directly affected by hypereutrophic conditions in Upper Klamath Lake ( U. S. Fish and Wildlife Service 1993). Studies conducted after publication of the Shortnose and Lost River Sucker Recovery Plan indicate that Tule Lake contains an estimated 159 ( 95% CI = 48- 289) shortnose and 105 ( 95% CI = 25- 175) Lost River suckers ( Scoppetone and Buettner 1995). Confidence intervals for these estimates are large because of small sample sizes and low rates of recapture. Recruitment rates for the Tule Lake population via spawning below Anderson- Rose Dam is low with significant larval production occurring only in 1995 ( monitoring occurred 1991- 99) ( M. Buettner, pers. comm). Entrainment from the irrigation system is likely the largest source offish for Tule Lake ( U. S. Bureau of Reclamation 1998). Both species of suckers in Tule lake are in good physical condition relative to fish in Clear Lake and Upper Klamath Lake with Tule Lake fish being generally heavier and exhibiting few if any problems with parasites or lamprey. ( Scoppetone and Buettner 1995). U. S. Bureau of Reclamation ( Reclamation) biologists tracked 10 radio- marked suckers in Tule Lake from 1993- 95. From these studies, specific use areas by time period were identified with over 99% of radio locations occurring in Sump 1( A). Of particular importance from these studies was identification of an over- summer site in the south central region of Sump 1( A) termed the ADonut Hole# ( DH). In early 1999, the U. S. Fish and Wildlife Service ( Service) proposed a wetland enhancement project on the 3,500 acre Sump 1( B). The project was designed to improve habitat for waterfowl and other associated wetland species as well as improve water quality through the conversion of Sump 1( B) from an open body of shallow water to an emergent year- round flooded wetland. The primary mechanism to create the desired habitat condition is a series of annual spring/ summer drawdowns thereby creating conditions suitable for germination of desired emergent plant species. Of principal concern in developing the project was the potential effects on suckers within the sumps. Because of the proximity of both sucker species in adjacent Sump 1( A), a project monitoring plan was developed to ascertain the potential effects of the Sump 1( B) Project on suckers and water quality. Our monitoring design benefitted from studies of water quality and sucker movements by Reclamation biologists from 1992- 95. This report summarizes findings of the first year= s pre- project monitoring effort ( April- December, 1999) relative to water quality and movements of radio- marked suckers. Objectives 1. Describe seasonal distribution and movement patterns of both sucker species in Tule Lake NWR and determine if fish movements have changed since initial studies by Reclamation biologists in 1993- 95. 2. Characterize water quality, in space and time, of areas used by adult suckers compared to areas which are not used. 3. Document and describe movements of radio- marked suckers to spawning areas below Anderson- Rose dam. 4. Determine whether recruitment of larvae and juvenile was occurring below Anderson- Rose Dam. Methods Monitoring radio- marked adult suckers In April and May, 1999, Reclamation biologists captured 14 suckers and surgically implanted radio- transmitters ( ATS, Isanti, MN) having a projected battery life of 12 months. Each transmitter had an external antennae that exited the body cavity near the lateral line of the fish. Eleven Lost River and 3 shortnose suckers were captured using trammel nets at the northwest corner of Sump 1( A) ( 9 fish) and immediately downstream of Anderson- Rose Dam on the Lost River ( 5 fish) ( Table 1). We located radio- marked fish via air thrust boats using a scanning receiver and 4- element yagi antennae. Fish were located fish 4 times/ month during March and April, 2 times/ month from May through September, and once per month from October through December. Fish not located via boat were located from fixed wing aircraft. We determined fish locations by moving as close as possible to undisturbed fish and recording locations with a Global Positioning System ( GPS). All GPS positions consisted of 180 rover points/ location and were differentially corrected via post processing software ( PFinder ver. 2.11). We recorded depth information at each fish location. To determine timing and duration of the spawning migration, we monitored radio-marked fish from vehicles on the east levee of the Lost River downstream of Anderson- Rose Dam. Table 1. Data from Lost River and shortnose suckers captured on Tule Lake National Wildlife Refuge, California and Anderson- Rose Dam, Oregon in 1999. RADIO TAG 165.043 165.063 165.073 165.103 165.084 165.094 164.641 164.863 164.494 164.854 165.054 164.845 164.763 164.914 CAPTURE DATE 4/ 2/ 99 4/ 2/ 99 4/ 2/ 99 4/ 2/ 99 4/ 2/ 99 4/ 2/ 99 4/ 9/ 99 4/ 2/ 99 4/ 9/ 99 4/ 30/ 99 5/ 5/ 99 5/ 5/ 99 5/ 18/ 99 5/ 18/ 99 CAPTURE LOCATION TULELAKE SUMP1A TULELAKE SUMP 1A TULELAKE SUMP 1A TULELAKE SUMP 1A TULELAKE SUMP1A TULELAKE SUMP 1A TULELAKE SUMP1A TULELAKE SUMP1A TULELAKE SUMP 1A ANDERSON ROSE DAM ANDERSON ROSE DAM ANDERSON ROSE DAM ANDERSON ROSE DAM ANDERSON ROSE DAM SPECIES LOST RIVER LOST RIVER LOST RIVER SHORTNOSE SHORTNOSE LOST RIVER SHORTNOSE LOST RIVER LOST RIVER LOST RIVER LOST RIVER LOST RIVER LOST RIVER LOST RIVER SEX FEMALE FEMALE FEMALE MALE FEMALE FEMALE FEMALE MALE FEMALE FEMALE MALE MALE MALE FEMALE WEIGHT NO DATA NO DATA NO DATA NO DATA NO DATA NO DATA 2830 g 1040 g 5260 g NO DATA 2214 g 1542g 2350 g 1811 g FORK LENGTH 777 mm 681 mm 754 mm 473 mm 523 mm 754 mm 544 mm 440 mm 775 mm 753 mm 556 mm 486 mm 594 mm 477 mm PIT TAG NO. 1F3E34432C 1F39064959 1F4C5A6754 1F07315752 1F31462743 1F4C5A6754 1F3726750F 1F36490062 1F37103466 1F390F1801 1F3E2A7702 1F36443235 1F30753309 1F390E6B2F Recruitment Reclamation biologists conducted larval and juvenile sucker surveys during May and June by sampling, visually and with dip nets, the emergent vegetation at the periphery of the Lost River downstream of Anderson- Rose Dam. Egg viability surveys were conducted in the gravel sediments immediately below the dam in May. Water quality We preselected water quality sampling sites ( Fig. 2, Table 2) in Sump 1( A) to correspond to adult sucker use areas as determined by studies of radio- marked adult suckers conducted by Reclamation in 1993- 95 ( Fig. 3). We selected 2 sites in Sump 1( B) which met or exceeded the minimum depth requirement (> 3ft) for both sucker species ( M. Buettner, pers. comm.) after referring to 1986 bathymetric maps. We attempted to obtain data from each site twice/ month. We moved 2 sample sites ( Donut Hole and Donut Hole Northwest) early in the summer and 1 site ( Donut Hole West) ( Fig. 2) during mid- summer to better represent summer use locations of radio- marked fish. From May through November, we measured water quality parameters ( dissolved oxygen ( DO), hydrogen ion concentration ( pH), and temperature (° C)) using DataSonde 3, 4 and 4a= s ( Hydrolab Corp., Austin, Texas) ( hereafter referred to as Hydrolabs) 26 cm ( 12 in) above the sediment. We suspended Hydrolabs, within PVC tubes, from metal fence posts driven into the sediment. Data were collected hourly over a 96 hr period at each monitoring site. We downloaded data from Hydrolabs using the Hyperterminal software package v. 690170 to a personal computer. Unit probes were cleaned and calibrated according to Hydrolab guidelines ( Hydrolab Corporation 1997) and local geographic standards. Using the same deployment schedule as with our Hydrolabs, we sampled turbidity at each site using a Portable Turbidimeter model 21 OOP ( Hach Corp., P. O. Box 389, Loveland, CO 80539). We collected water samples 27 cm ( 12 in) above the sediment at each sample site. We measured turbidity in NTUs, following the guidelines in the product manual and we measured water depth using a hand- crafted wooden pole, marked in measured increments. We summarized water quality data using Microsoft 8 EXCEL software v. 97 SR- 1 and SPSS for Windows release 9.0.0. Because of the apparent difference in summer water quality in the DH versus other sampling sites, data were summarized as DH sites and Non- DH ( NDH) sites. Tule Lake NWR Water Quality Monitoring 1999 MfSVTHOLE \ OKTIIH ' w Background Hvdrolon> Luke m Mudflats Uplands X Water Vionitonny Stations ( Hydrolafa sites) MK ker Radio \ ckmcin L. Hicks. D. .1 Beckitraod, K Miller, USFWS Background HydfOlOf} Sat'I Wetlands Invcnlon LSI Sh S Map Projection UTMZCM IO, WGS-* 4 By: L. Hkks. USFWSUSBR 02/ 00 i Figure 2. Water quality sample sites, Tule Lake National Wildlife Refuge, California, 1999. 8 Table 2. Characteristics of water quality sampling sites, Tule Lake National Wildlife Refuge, Tulelake, California, 1999. SITE NAME NORTHWEST SUMP 1A DONUT HOLE NORTHWEST DONUT HOLE WEST DONUT HOLE SOUTH DONUT HOLE DONUT HOLE EAST ENGLISH CHANNEL WEST SUMP IB EAST SUMP IB PUMP 10 SUMP 1A2 SITE ABBREVIATION NWS1A DHNWSlAor DHNW DHWEST DHSOUTH DHSlAorDH DHEAST ECSlAorEC WS1B ES1B PMP10 UTM N 4642199 4638316 4638881 4638144 4637299 4639024 4634604 4634153 4633948 4636635 UTME 620803 620542 321022 621355 621475 621971 625041 636647 628835 624748 DEPTH of MONITORING SITE ( m) 1 1.2 0.9 0.9 0.8 0.7 0.8 0.8 1.0 0.8 0.5 1 Depth of water at deployment 2 Pump 10 data will not be discussed in this document. Results Radio- marked suckers We located fish 231 times in locations similar to those determined by Reclamation biologists in 1993- 95 ( Figs 3- 4). Lost River and shortnose suckers did not appear to differentiate use of the sump by species; we located both species intermixed throughout the monitoring period. With the exception DH and DHNW ( Fig. 2), water quality sampling sites were close to seasonal sucker use areas. Of 14 suckers marked, mortality occurred in only 1 fish. A Lost River sucker (# X9) was tagged on 18 May at the Anderson Rose Dam; she was not located again until 23 days later on 9 June. From 9 June to 17 November, # X9 was located by signal within approximately 15 m of the original location based on the location data. It is likely that this fish died in early June within 2- 3 weeks of being radio- marked. It is unknown if this mortality was related to the stress of handling and marking or some other cause. April - May - In April- May, a period of maximum fish movements ( Figs. 5- 18), most suckers congregated in the AEnglish Channel ® between the sumps with a scattering offish located between the northwest corner of Sump 1( A) and the AEnglish Channel ® ( Fig. 4). Only 1 fish radio- marked in Tule Lake moved into the Lost River. This particular fish, a female shortnose sucker (# G9) was radio- marked in the northwest corner of Tule Lake on 9 April, was located in the AEnglish Channel ® on 14 April, and subsequently was located in Lost River below Anderson Rose Dam on 29 April and 6 May. Tule Lake Sucker Radio Telemetry \ pril 1993 - \! a> 1995 Hi tckwtstmd H) drohgy mm Marth/ Wi'lhiml • • River I Sucker Locations o Jan - Mar & Apr - May ° Jim - Sep • O t t - l h i 1 I . . . . . . ydtOl Ig) -: i '•'•, l: i M h - c .1 J I SI WS UtoBiihywwUy KkmrtiiB ••. iraOffia MapPinoiccii.- i rM2oni VM, S- » 4 • HJ I-. IKKV USffW& n SBB Figure 3. Locations of radio- marked suckers from studies conducted by U. S. Bureau of Reclamation, on Tule Lake National Wildlife Refuge, California, 1993- 1995. 10 Tule Lake NWR Sucker Radio Telemetry April - December 1999 Oregon California [ Sump 1A Background Hydrology J Lake Uplands SOcker Locations • Apr May o Jun - Sep • Oc! - Dec | Qanuthole area = * 466 acres ( manually est from fish bca Suckei EUdiQ Tdctrcter: L Hi cks, D TtccnsDn, : Nati Wedatd^ Inventory. USTWS i t Hi cfa, usFwsnrsBH o 2/ 00 Figure 4. Locations of radio- marked suckers on Tule Lake National Wildlife Refuge, California, 1999. 11 Tule Lake- Sucker Radio Telemetr> - 1999 MMti « phrnl Fish: Lost River Sucker " A9" Sex Female Length: 777 mm fag I ocation I ulc I ; ike Sump IA Tai: Dare: 04/ 02 99 Vlort. Date: 3 - O 5 ni 0 5 - 1 ni ( Surface Fixation - 4034.9( 1') Lain' ihpth 1 - 15m Itydrolah tUm » t tm fcdarl .' i rein: l. llni. i. Becb- rmc l^ . I M I ^ I V I M . Kl; nn: nli limm Xvtup,- :, rr, k, I M •'• - \ * e BMb% « ldry KIWWHI I t em ,^ wnOi-... I SB I Background Hy* » : 4.. .. , „ | WCIIWKIJ faivewior^. I'SI A S >• • ••• i •• i MZcne IC ' •..-• .: i;% i n . , i s , u s Figure 5. Movements of radio- marked sucker A9 on Tule Lake National Wildlife Refuge, California, 1999. 12 Tule Lake- Sucker Radio Telemetry ~- 1999 Hsh ], ost River Sucker"! Sc\ Female Length: UK] mm Tag Location [ We Lake Sump IA IML Dace U4/ O? W Mort Date: • i Khrr( m » depth) • 1 Mwrvl. Will. 1.1,1 I |- l Muil I t * 3 - O 5 m 0 5 - t rn ( Surtax i: Nation - 4O34. W) flyJrttlaff SiKker RacfcTclemdn: I. IliduU. Bccks CompK. i BFW8 I. a.- Mil ,. l klmulklfaun \ « » OI.. . I MM Background llyfrotogv \ « bonB| W ctlands inv « « or., U8FWS Map IVv^ vi ... i M ,. !• ' ••"• . I:-. | || ... i JFWS Figure 6. Movements of radio- marked sucker B9 on Tule Lake National Wildlife Refuge, California, 1999. 13 Tule Lake- Sucker Radio Telemetry - 1999 Fidi Lost River Sucker * C9" Sex Male Length: 619 mm Tag Location I ule Lake Sump IA Fag Date: M/ 02 w VIon. Date: { Surface Fixation - 4II34. W) tiat- ttffawmf th- frohf(\ • • Khii i> nJv|> th) H i \ iM, vh\ wtl,..., i UplniKi Lak mm MU. I n. i 3 - 0 5 ni 0 5 - 1 ru • I n kaAo Tckwdn: LHkfcaJ. Beduimd P HMUWM K V'l « • .|: I- II: I-| I I n i ii Cwnpk. I 8FWS Klmwil.[ ten< •• . : M . . . I M : mind I l > * o t i c \ Ntttaaal Wetlands Inventory* I ^| •.!•••• • • . • I -. I \ | . , K 1 1 . i •• » •• -; !:•• I II . I SFWS r Mil . Figure 7. Movements of radio- marked sucker C9 on Tule Lake National Wildlife Refuge, California, 1999. 14 Tule Lake- Sucker Radio Telemetry - 1999 Haf kgnm n BB Rh « ' i MM. Fish Shortnose Sucker " l) l>" Sex Male Length: 473 nun ail Location: I ale Lake Sump IA Tag Date 04/ 02/ 99 Mort. Date: I Surface Fixation - 41> 34. lW) /....'.:• Depth Mi, I lbtx 0- OSm ^ ^ 0 5 - 1 rti - I - ' I •' • • ' ' • I HkfcU. lUbrxilHil) I ! . . . ! - . K Mil M KlttiHtfiBttk K « Aig « : . , - , - , L . I M ''. •• Ifydrolah Kit,-* i., i.- . il ... (.. , , , i , , •. . ; „ , . . , M ! - U a d ^ r t w n d ! ! > * • ••'• • t n | XVctinjKlt [ mcTrt « . T\. • SFWS I • • . . • • , , • l:% | n ...... i M A S * £*> Figure 8. Movements of radio- marked sucker D9 on Tule Lake National Wildlife Refuge, California, 1999. 15 Tule Lake- Sucker Radio Telemetry - 1999 Fish Shortnose Sucker T39" Sc\ Female Length: 523 mm rag Location I ule I ake Sump IA rag Date M/ 02 w Date: • 1.1 I i) I 1-.. 1 • | i i . . I. llcct. M m i l l ) ] Compl- • ' "* I '• S 5> NJUOIWI Wetlands b i v c m u r y I IS I » S • ••• I " I ••. l/. nc It. i . . . : - . , ' II-. | || ..... Figure 9. Movements of radio- marked sucker E9 on Tule Lake National Wildlife Refuge, California, 1999. 16 Tule Lake- Sucker Radio Telemetry - 1999 Fish Lost River Sucker " IV Sc\ female Length: 754 mm Tag Location Tule Lake Sump 1A * rag Date 040; 99 Vkirt Date: ( Surface Fixation - 4( 134.90') Hat ground Hydrology U • : • • Rhtr< iM » < Jvpfh) • iM.., lll » r • i M. tvh\ VHl,, na 0.0,5m Uphml » 0S- 1rt. 1 - 1 5 IT » 1 £ m fackcrRadk> 1 r .. In: UfisfcaJ. Ikvkwjjjui P » •, K V, 1 • l: m: rli M a Jfcflifc* CorapUv I IFWS Uydrolth sit,- s i , i t \ t, il*> m. f n Klmwlh tfewn .\ wn < » flfa . I SBR K o t o ^ : \ ai,,, na| Wctljmd* bivcm^ f • I SFWS Map hV^ vl .. . I MZpftClO Cony aid I;-, i n , . UWTOS Figure 10. Movements of radio- marked sucker F9 on Tule Lake National Wildlife Refuge, California, 1999. 17 Tule Lake- Sucker Radio Telemetry - 1999 Fish Shortnose Sucker " Q9" I cm ale Length: 544mm I. IL1 Location Tule Lake Sump IA * rag Date 04/ 09/ 99 Mori ( Surface rloaliun - I II . . I. \'-.-\-- m.' I-K V i ! l • l : n i : r l l ! - i i : ii : . r , : . | , . I s|\ VS KlmuHi Btom Aivs 4 M1K. I SBR \ j i > i m l Wetlands invcnlon i 5FWS M. « ;. ' - . . I - . I M / . „ . • | » . I II , • I SFWS BB Ki^ i imi M \ hrvh\\ ilhiml Upland Lais Otfttk MuiJ Hals Figure 11. Movements of radio- marked sucker G9 on Tule Lake National Wildlife Refuge, California, 1999. 18 Tule Lake- Sucker Radio Telemetry ~ 1999 • Jit" Fish Sex Length: Tag Location: Tag Date: Sh oi1no so Male 440 mm Tule 1 < ikc 04/ 09/ 99 / Sucker Sump " H9" IA f tif( rtitiini / / i Kh< < 1- 1 . ri. l Mud FliitK 0 - 0 5 m 05 - 1 ni < SurfiKi 1 , - > 18m K V , , • l; , - n : , l , 5 , , , : . • „ • , '• • ' • • : ' k • ' s | ' ' ' s K i i. l I-. . . . tVu. I M i ^ ' ^ \ tbonn\ Wetl « nd « faiv « mor>. I . \ I A • » - i I M „, | i. Ih | || , , I M Figure 12. Movements of radio- marked sucker H9 on Tule Lake National Wildlife Refuge, California, 1999. 19 Tule Lake- Sucker Radio Telemetry - 1999 I- isii Lost River Sucker " 1 Sc\ Female Length: 775 mm Tag Location: Tule Lake Sump IA Tag Dale: 04/ 09/ 99 Mort. Date: ( Surface I* k^ atinn Tckmrtn: l.|| uk. I. K J y me l> I..: II> M K •-.•. I - I : . . , : Compkv • BPWS "' ••' Klmwlbl? ti » m A* MOffice I SBR IvckuioRv : \ atxin » l Wetlands biv « Mory. I > I / i < n k j f M U U l f i x • • • ' < • . • • Khri ( IM » tlr|> rh) Mat vh Wit I HI ii I LpbmJ Figure 13. Movements of radio- marked sucker 19 on Tule Lake National Wildlife Refuge, California, 1999. 20 Tule Lake- Sucker Radio Telemetry - 1999 Fish: I- osi River Sucker " P9" Sc\ Female Length: 7^ ' m m lag Location Anderson Rose Dam Tag Dale: 04/ 30/ 99 Mort. Date: ( Surface bk'talkm - 4UJ4. W) % mkm i .' i eraetn: |.| ikk* J. lkvl> « uui I) . . . . i - K '•.'. . - i . . r . . i . BMte Rvtug « , « ., .. . . - . M V . . Compk. i IPWa I « l.- . ll ,. t ,.. , , , | , , •. . „ ,. . | M i • E* K* gr° umi I K v H , ^ htaHml Wctl » nd » knvMori i -- I - s ^ • •• I •• I M i . , - It. > •—•• . i;-. i II . . i MWN Figure 14. Movements of radio- marked sucker P9 on Tule Lake National Wildlife Refuge, California, 1999. 21 Tule Lake- Sucker Radio Telemetry - 1999 Fish Lost River Sucker " i;(>" Sex Male Length: 556mm Tag Location Anderson Rose Dam Tag Date 05 05 w Mort. Date: ( Surface H o at ion - - MM4. W) • i • i n. t . i. ikJ^•. m..- I) . M. HV*. K Vi . • hnrnflh ii » m Hvfil^- '" I - I K ••. . I" K i r •• . M ... I MiM \-, ..,.•. \ , ,,.| v. , |,,.|. ( r. v : , f . l MH • . ! ., I M „ |. Figure 15. Movements of radio- marked sucker U9 on Tule Lake National Wildlife Refuge, California, 1999. 22 Tule Lake- Sucker Radio Telemetry - 1999 Fish: Lost River Sucker " W Sox: Male Leagth 486 mm \ AII Location; Anderson Rose Dam Tag Date: 05/ 05/ 99 Mort. Date: ( SurfiK- c Floaiiun 4 « . U. W| •• ' • •• ' • ; • ' ' ' ' I I I . . • 1. Bedu HI.- D . K V I " , I . < l: iMi; iTh : - i • : .1 MIK! KI. HH I - • • > • . • • \ 1 i i i v . v l . r i l - i r . v : • ! • . 1 • . . . 1 . • 1 \ | , , c 1. Figure 16. Movements of radio- marked sucker V9 on Tule Lake National Wildlife Refuge, California, 1999. 23 Tule Lake- Sucker Radio Telemetrv - 1999 Fish: Lost River Sticker " W(>" Sex: Male Length 594 nun I nil Location: Anderson Rose Dam Tag Date: 05/ 18/ 99 Meet. Date ( Surface H o at inn 4< i. U/) i » ') - ' • ' I ' : ' - ' • I Hid • i. Bcvl. v.' im: P . , i iikr. Klanwlh B* oi R< tu^ : . . r v . k v I M •'•- ' -*•• Mil - >•> • KlMmth IViim .\ wn 0 1 . . . I SBR g \ ^ m u l Wcllmls En^ :• r I ^ | V \ • • • I - i I M/ V. u- It; 1 ••••:•• .-.' II-. W Figure 17. Movements of radio- marked sucker W9 on Tule Lake National Wildlife Refuge, California, 1999. 24 Tule Lake- Sucker Radio Telemetry - 1999 Fish: Lost River Sucker " X9" Sex: Female Length 477 mm Tag Location; Anderson Rose Dam Tag Date: 05,1899 Mori. Date, suspected in June 1999 Hn i in Mat* h Will •. 1. fackn RadioTclenvtn; i. tfidbU. lkvk « ramLI>. r* Mmw « t K ','. . hmtdth B* m R^ UB* CompK- • n •'• • B % VJI < Kflb . I M i ,• h> tir> l Wetlands Envcntun. I SFft'S \ I , \ ' I K I I | , ... | s.| , \ s Figure 18. Movements of radio- marked sucker X9 on Tule Lake National Wildlife Refuge, California, 1999. 25 June - September - During this period, nearly all suckers ( particularly during July and August) could be found in the DH at the south central portion of Sump 1( A) ( Fig. 4). By connecting the outermost locations of approximately 90% of radio locations, the calculated area of the DH was 188 ha. Suckers using the DH were found in depths ranging from 1.0- 1.3 m ( 39- 50 in) ( Fig. 19). September - December - During this period suckers moved from the DH to the northwest corner of Sump 1( A). As of the writing of this report, ( February 15, 2000) the 13 remaining fish occupy the same area. Recruitment Surveys by Reclamation biologists for larval and juvenile suckers in the Lost River below Anderson- Rose Dam failed to document the presence young of the year fish. Below is a summary of surveys: Date 5/ 25/ 99 6/ 2/ 99 6/ 10/ 99 Result Searches for eggs in gravel below Anderson- Rose Dam revealed eggs in 4 of 5 sites, some of which were viable. Larval surveys conducted at 3 sites ( visual and dip net) from the dam to the wooden bridge were negative. Larval surveys conducted at 5 sites including the dam, 2 and 1 mile downstream, the wooden bridge, and East- West Road were negative. Larval surveys conducted at 2 sites downstream of dam were negative. Water quality pHBln general, pH values were less variable in the DH then areas outside this region ( Fig. 20). In all areas, median pH values remained below 9.5 until early June at which time values outside the DH were frequently above 10.0. pH values were particularly high (> 10.0) in late June through August in ESIB and NWS1A and periodically in the EC and WS1B. pH values in the DH and areas adjacent, remained below 10.0 through September; however, there was a gradual rise in pH values in DH sites from May through September. In late September and early October, DH pH values exceeded all other sites. rem/ reratareBTemperatures in all regions reached a peak in late July through early August with no discernible difference between DH or NDH sites ( Fig. 21). Dissolved oxvgenBDonut Hole sampling station s differed in dissolved oxygen characteristics relative to other areas of the sumps. During the June through August period DH sites ranged from 4.5 to 11.2 mg/ 1 while areas outside this region ranged from 1.1 mg/ 1 to 18.2 mg/ 1 ( Fig. 21). Toward November DH and NDH sites became similar DO dynamics ( Fig. 21). 26 Turbiditvllln general, turbidity values appeared greater in the DH versus areas outside, although some sites particularly in Sump 1( B) were quite variable particularly in June and July. This may have been due to the large amount of filamentous algae in Sump 1( B), potentially interfering with the measurement. Turbidity rose sharply at sites by late October and November ( Fig. 23- 24). 20 >• 1 5 O UJ a UJ DC 10 0 39 41 43 45 47 More DEPTH Figure 19. Water depth used by radio- marked suckers in the " Donut Hole" ( June- August), Tule Lake NWR. California. 27 BJll I U r S o I! Figure 20. pH data collected from " Donut Hole" and non- Donut Hole water quality sampling sites on Tule Lake National Wildlife Refuge, California, 1999. Box and whisker plots represent the median, 25- 75* and 10- 90* percentiles, and outliers. 28 temp rC) S 2 £ ' I j 1 II i 9 E 9 S Figure 21. Water temperatures collected at " Donut Hole" and non- Donut Hole sites on Tule Lake National Wildlife Refuge, California, 1999. Box and whisker plots represent the median, 25- 75^ and 10- 90^ percentiles, and outliers. 29 do ( mgfl) I do ( mg/ l) OP> !*• WKamm 01900 gGBM s ' S:' TP" » S i I ! if Figure 22. Dissolved oxygen concentrations at " Donut Hole" and non- Donut Hole sites on Tule Lake National Wildlife Refuge, California, 1999. Box and whisker plots represent the median, 25- 75* and 10- 90* percentiles, and outliers. 30 260.0 -. 240.0 220.0 - 200 0 180.0 => 160.0 H 140.0 - z 120.0 100.0 - 80.0 60.0 40.0 20.0 n n - » NT" —•— Depth ( m) fc= _ 6/ 2 107.00 0.8 Donut Hole Northwest - — .^^^ 6/ 7 77.20 0.8 H •—-^^ ' '—^ 6/ 14 25.30 0.8 6/ 21 24.80 0.8 - 1.0 o o O CJl depth ( m) 260.0 -, 240.0 220 0 200.0 180.0 - 2 160.0 z 140.0 - 120.0 100.0 - 80.0 - 60.0 40.0 20 0 0.0 » NTU — a— Depth ( m) , •=— mmm •= « a 6/ 22 44.00 0.9 Donut Hole West — « — — » - 6/ 28 26.60 08 •— 7/ 6 19.90 08 . ^ m — _ _ _ _ _ _ _ 7/ 13 25.70 0.8 • - _ — r- • 7/ 19 51.40 0.8 1.0 0.5 £ a. T3 0.0 260 0 240.0 - 220.0 - 200.0 - 180.0 i « n n _ H 140.0 - z 120 0 ^ 100.0 • 80 0 60.0 40.0 20.0 - u. u » NTU — m— Depth ( m) 6/ 22 93.70 0.8 6/ 28 95.40 0.7 Donut Hole East 7/ 6 72.70 0.7 7/ 13 32.30 0.7 —•'•"-""* 7/ 19 50.20 0.5 -*"— 7/ 28 62.50 0.8 8/ 2 73.30 0.8 \ ^ 8/ 10 18.55 0.8 8/ 19 50.20 0.8 8/ 25 22.20 0.8 8/ 31 58.67 0.7 \ 9/ 8 14.38 0.8 9/ 14 11.03 0.8 9/ 20 7.00 0.7 9/ 29 7.80 0.7 j / A - 10/ 25 51.00 0.7 t - fT u 11/ 23 210.00 0.6 1 0 - 0.5 JZ jepi - 0.0 Figure 23. Turbidity at " Donut Hole" sites on Tule Lake National Wildlife Refuge, California, May to November 1999. 31 260.0 i 240.0 220.0 200.0 180.0 3 160.0 £ 140.0 - 120.0 100.0 80.0 60.0 40.0 20.0 0.0 » NTU —•— Depth ( m) • ^ 6/ 2 81.10 0.8 Donut Hole - — - ^ 6/ 7 49.20 0.8 — • 6/ 14 21.50 0.8 =— 1 6/ 21 24.80 0.8 r 1 0 o p d en depth ( m) 260 0 240.0 • 220.0 - 200.0 . 180.0 - K 160.0 • z 140.0 - 120.0 100.0 80.0 . 60.0 - 40.0 - 20.0 0.0 . t K » TII — a— Depth ( m) B — • 7/ 21 53.30 0.8 .— m-— 7/ 28 40.50 0.8 Donut Hole South _—• 8/ 2 56.80 0 9 » - ^ 8/ 10 17.13 0.9 *—• 8/ 18 19.70 0 8 8/ 25 21.73 0.9 ^ \ 8/ 31 64.90 0.8 9/ 8 21.27 0.8 9/ 14 20.80 0.8 9/ 20 29.97 0.8 ^ - • - ^ 9/ 29 49.30 0.8 / / 10/ 25 33.70 0.8 / / 11/ 23 170.00 0.7 1 0 o o d en depth ( m) Figure 23 ( cont.). Turbidity at " Donut Hole" sites on Tule Lake National Wildlife Refuge, California, May- November, 1999. 32 260.0 -, 240.0 - 220.0 200.0 180.0 - 160.0 Z> 140.0 \ z 120.0 - z 100.0 80.0 60.0 40.0 20.0 - 0.0 *_ NTU • depth ( m) y 5/ 26 12.30 0.7 6/ 2 58.70 0.8 A- 6/ 7 20.30 0.9 / / 6/ 21 57.40 0.8 // A A\\ 6/ 28 239.0C 0.8 V\ East Sump 1B J s in 81.70 0.7 : / I 7/ 12 10.40 1.0 | A / \ J I s f 7/ 27 228.00 1.0 \ - V \ 8/ 2 88.00 0.8 8/ 10 40.00 0.9 8/ 18 38.17 0.8 8/ 31 11.30 0.7 9/ 9 7.00 0.7 9/ 14 6.17 0.7 9/ 20 5.83 0.7 • / 10/ 25 44.80 1.0 * 4-— \ ft . 11/ 23 186.00 0.5 1.0 ? e Q. 0.5 • 0.0 260.0 n 240.0 - 220.0 200.0 180.0 160.0 D 140.0 1— 120 0 z 100^ 0 80.0 60.0 An n 20.0 - 0.0 - —+— NTU —•— depth ( m) —•— 5/ 26 13.70 1.0 _, • —- « - 6/ 2 57.30 1.1 --•— ' \ 6/ 7 41.10 1.1 6/ 21 18.70 1.0 —•— / \ 6/ 28 138.0( 1.0 \ \ / ¥ West Sump 1B - . • — • / 7/ 7 ) 29.90 1.0 A \\ 7/ 12 88.90 1.0 k / \ / 7/ 27 19.00 0.9 / \ / \ 8/ 2 73.00 1.0 L \ \ 8/ 10 5.47 1.0 8/ 18 6.40 1.0 8/ 31 9.20 1.0 9/ 9 8.58 1.0 9/ 14 8.37 0.9 9/ 20 11.73 0.9 / / 10/ 25 39.50 0.7 f 11/ 23 85.00 0.8 1 5 sz Q. - 0 . 5 • - 0.0 260 0 240.0 220.0 - 200.0 - 180.0 160.0 3 140.0 t ; 120.0 100.0 80.0 - 60.0 An n . 20.0 0.0 » NT" — m— Depth ( m) 6/ 2 46.50 0.8 -~ « — 6/ 7 16.10 0.9 —•—. 6/ 14 39.00 0.8 / 6/ 22 9.71 0.8 English Channel Sump 1A 6/ 28 6.79 0.8 \ ^ _ 7/ 13 17.90 0.8 7/ 20 17.60 0.8 7/ 28 26.80 0.8 8/ 10 4.80 0.9 8/ 19 7.33 0.8 8/ 25 6.50 0.8 8/ 31 7.10 0.8 9/ 8 13.34 0.8 ==•== 9/ 20 15.50 0.8 J 9/ 29 22.60 0.7 — y / 10/ 25 98.70 0.8 11/ 23 146.00 0.8 1 5 - 1.0 — 0.5 - g 0.0 260 0 240.0 220 0 - 200.0 - 180.0 - 160.0 => 140.0 - £ 120.0 mnn . 60.0 40.0 - 20.0 u. u J •— NTU —•— Depth ( m) I 6/ 2 36.50 1.2 —•— 6 / 7 12.60 1.2 6/ 14 13.10 1.2 y 6/ 28 7.40 1.1 7/ 6 71.60 1.0 Northwest Sump 1A —•— 7/ 13 5.27 1.1 — » — —•— 7/ 19 28.50 1.1 7/ 28 20.50 1.2 8/ 2 32.10 1.2 ^- B—' 8/ 19 4.50 1.1 / 8/ 25 52.87 1.1 A ' \ 8/ 31 115.67 1.2 ="-•— \ —•*=; 9/ 8 4.10 1.1 1 4- 9/ 14 7.89 1.1 —•— J I \ 9/ 20 12.43 1.1 — « ^ 10/ 25 180.00 1.1 11/ 23 164.00 0.9 1 S d jpth ( m) • 0.5 - o - 0.0 Figure 24. Turbidity at non- Donut Hole sites on Tule Lake National Wildlife Refuge, California, 1999. 33 Discussion Water Quality The area of the DH was delineated from plotted June through September locations of radio-marked suckers ( approximately 188 ha.). The location of the DH could also be seen as an area of relatively turbid water from aerial photographs from August 1998 ( Fig. 25) as well as aerial photographs taken in 1984. It is possible that the combination of 2 factors may cause the observed turbidity in the DH. First, seeps or springs may be present in the area which result in more favorable water quality during summer which attracts suckers as well as other fish species to the area. The resultant concentration offish ( suckers and chubs) may stir the sediments during feeding activities, thereby creating the observed turbidity. The additional turbidity in the DH may inhibit light penetration and the production of algae, thereby reducing photo synthetically elevated pH and the extreme minimum and maximums in DO typical of may water bodies in the Klamath Basin including Tule Lake ( Dileanis et al. 1996). The rise in turbidity at all sites in fall is likely due to the break down of rooted aquatic vegetation which then allows for wind induced wave action to stir the sediments. Other than the DH, all other sites had dense concentrations of rooted aquatic plants and/ or filamentous green algae during summer. June to September DO and pH dynamics in the DH appeared different than at NDH sites ( Figs. 20 and 22). The difference was greatest in early summer with the difference becoming smaller by late summer and essentially disappearing by fall. Whether this water quality difference was a result of the more turbid waters or inflow from springs is unknown. However, attempts by Service hydrologists to model inflows, evapotranspiration, and outflows from the sumps have resulted in a positive imbalance of approximately 21,000 acre- feet of water from April through September. This positive imbalance is greatest in spring and early summer, gradually lessening by summer and essentially disappearing by fall ( Tim Mayer, pers. comm.). If this inflow is occurring, it may explain differences in summer water quality between DH and NDH sites. June to September water quality in the DH may be critical to the over summer survival of suckers in Tule Lake as pH and DO in NDH sites during summer often exceeded the tolerance limits for the fish. DO and pH levels at DH sites were less variable and did not reach the extremes that were reached in NDH sites. The lowest DO measured during June through September at DH sites were 4.83 mg/ 1 ( DHWEST) and 4.96 mg/ 1 ( DHEAST). DO and pH during summer from this study were similar to values collected by Reclamation in 1992 ( Table 3). Buettner and Scoppettone ( 1990) found juvenile suckers only where DO was above 4.5 mg/ 1. It is currently believed that adult suckers become stressed at DO levels below 4.0 mg/ 1 with mortality occurring at or below 2.0 mg/ 1 ( M. Buettner, pers. comm.). The relatively high over- summer survival of radio- marked suckers, compared to suckers radio- marked in Upper Klamath Lake ( M. Buettner, pers. comm), is further evidence of suitable summer water quality conditions in the DH on Tule Lake. 34 Figure 25. " Donut Hole" in Sump 1( A) of Tule Lake NWR. Note visible turbidity of area. 35 Table 3. Mean dissolved oxygen, pH, conductivity, and temperature on Tule Lake National Wildlife Refuge, California, July and August 1992. Data are from 2 sites; 1 site each in Sump 1( A) ( within the ADonut Hole@) and 1( B). All data were from 96 hour continuous readings from Hydrolabs. Data were collected at intervals of 1- 2 hours. ( Data summarized from U. S. Bureau of Reclamation). Site Sump 1( A) Sump ( IB) Depth ( M) < 0.5 0.51- 1.5 > 1.5 < 0.5 0.51- 1.5 > 1.5 pH (± SD) ( 1200- 1700 hrs) 9.32 ± 0.83 n= 81 9.22 ± 0.93 n= 26 8.30 ± 0.71 n= 10 9.65 + 0.44 n= 21 9.79 ± 0.45 n= 7 No data Temp ° C (± SD) ( 1200- 1700 hrs) 21.85 ± 2.84 n= 81 21.53 ± 2.46 n= 26 19.90 ± 1.59 n= 10 22.96+ 1.10 n= 21 22.11 ± 0.51 n= 7 No data Conductivity 500 ± 266 n= 81 598 ± 277 n= 26 859 ± 694 628 ± 148 n= 21 571 ± 74 n= 7 No data DO1 Oof 31 days - - 8 of 21 days - - 1 Proportion of monitored days having a minimum dissolved oxygen level below 5 mg/ 1. ( Data from U. S. Bureau of Reclamation) pH levels in the DH generally remained below 10.0 whereas non DH sites frequently exceeded 10.0 ( Fig. 19). Falter and Cech ( 1991) determined a maximum pH tolerance in shortnose suckers of 9.55+ 0.43 under laboratory conditions, levels generally exceeded in June - September at non DH sites and some DH sites in late summer. Buettner and Scoppettone ( 1990) found juvenile fish in Upper Klamath Lake largely at sites with pH < 9.0, as did Simon et al. ( 1996) in 1994. However, in 1995, Simon et al. ( 1996) found that most juvenile fish ( 54%) were captured in areas of higher pH (> 10.0). Laboratory studies indicate significant mortality of larval and juvenile fish at high pH values (> 9.55) ( Falter and Cech 1991) and 9.92- 10.46 ( Bellerud and Saiki 1995). Previous water quality and fish health studies on the refuge determined that water quality conditions were stressful to aquatic life and was resulting in a high ( up to 37%) proportion offish with deformities ( Dileanis et al. 1996), however, studies of sucker ecology in Tule Lake have indicated that individual fish in the lake have a high condition factor and are free of external parasites ( Scoppettone and Buettner 1995). Bennet ( 1994) recognized this apparent inconsistency, stating, A... the observation that Tule Lake suckers are in better physical condition than Upper Klamath Lake suckers indicates that certain areas of the aquatic system may be of particular importance for the recovery of those species. ® In the case of Tule Lake this Acertain area@ is likely the DH.. Suckers in Tule Lake may be in good condition because of their limited population size, the abundant food resources in this lake, and adequate water quality ( in the DH) to survive the summer period. 36 Sucker movements Although, suckers were relatively sedentary during most periods of the year, they exhibited the ability to make long distance moves in relatively short periods of time, particularly during the April spawning period. The northwest corner of Sump 1( A) receives about 90% of the inflow from the Lost River and spring winds on Tule Lake tend to move large quantities of water through the AEnglish Channels back and forth between Sump 1( A) and 1( B). This movement of water at both locations may explain the movement of fish observed in April and May. Suckers may be attracted to both locations when seeking spawning habitat in spring. Recruitment During the April marking period, most captured suckers appeared to be physiologically ready to spawn; however, only one fish moved into the river. Of 10 radio- marked fish monitored by Reclamation in 1993- 95 no fish attempted to run the Lost River. This low proportion offish that attempt to spawn may have one or several causes or a combination, including: 1. Stress of handling and implanting radio- transmitters so close to the spawning season may prevent fish from becoming reproductively active. 2. Under normal conditions, only a small proportion of Tule Lake suckers may attempt to spawn in any particular year. 3. Flow conditions in or at the mouth of the Lost River may be inadequate to draw the fish into the river. 4. A shallow bar (< 0.3 m) of deposited silt exists between the lake and the mouth of the river which may form a physical barrier to the fish. At the present time, a mandated flow of 30 cfs is released below Anderson- Rose Dam to provide spawning habitat at the Dam. Although this flow is intended to provide suitable spawning conditions at the Dam, these flows may be inadequate to entice fish into the river. It is likely that the historic spring flows in the Lost River were many times higher than current regulated flows. However, given that the fish are largely unsuccessful in spawning and risk additional mortality traversing the river, adult survival may be enhanced by remaining in the lake. Scoppettone and Buettner ( 1995) also observed no radio- marked fish from Clear Lake to move into Willow Creek during the spring spawning period. In this case the authors attributed this result to either capture stress or low stream flows during spring. 37 Habitat use Although the DH is relatively shallow relative to other areas of Tule Lake, use of the DH may be mandatory to ensure over- summer survival. Although deeper waters are available to the fish, especially in the northwest corner of Sump 1( A), DO levels, in particular, likely preclude their use. Suckers did not move out of the DH until October when DO levels began to rise with cooler water temperatures. Although, Sump 1( B) contained suitable water depths and water quality conditions in fall, no suckers were located in this area. It is possible that suckers may prefer not to pass through the pipes connecting the Sumps or the proximity and flow from the Lost River in the northwest corner of Sump 1( A) may make this area more attractive as an over- winter habitat area. The relative lack of water depth in the DH as well as other areas of the sumps is becoming of increasing concern because of the loss of water depth through sedimentation. If suckers require a minimum of 3 ft of water, as is current believed ( M. Buettner, pers. comm.), current rates of sedimentation in the sumps threaten the future suitability of Tule Lake for suckers. Based on a comparison of bathymetric surveys conducted by Reclamation in 1958 and again in 1986, sedimentation has been steadily reducing the water holding capacity of both sumps. Between the 1958 and 1986 surveys ( 28 years), Sump 1( A) has lost 22.4% of its water capacity and Sump 1( B) has lost 30.8% of its capacity due to sedimentation. This would indicate a total mean sedimentation of 11.8 inches over this time period ( U. S. Bureau of Reclamation, unpubl. rep). Over the last several years, an attempt has been made to store additional water in Tule Lake during summer by raising water levels above 4034.60 ft. This increase in water elevations ( between 4034.60 and 4034.90 ft) has somewhat mitigated the loss of depth through sedimentation. However, without reinforcing and raising the levees around the sumps, there is a limit as to how high water elevations can rise. At elevation 4035.50 ft., operating regulations require breaching the sumps into overflow areas ( Sump 2 or 3). Although increased summer operating levels may assist the fish, they may also increase the risk of a flood event requiring the breaching of the sumps with potentially negative impacts to the fish. Acknowledgements The authors are indebted to fisheries biologist from the U. S. Bureau of Reclamation, Klamath Project, especially M. Buettner, B. Peck, and M. Green whom provided and surgically implanted radio transmitters, captured adult suckers, located fish from fixed wing aircraft, and assisted with study design. K. Miller from Klamath Basin National Wildlife Refuge collected telemetry, water quality, and GPS data and ensured all data were collected and coordinated consistent with study design. T. Mayer provide training in the calibration, deployment, and downloading of data from the hydrolabs and assisted with interpretation of water quality data. 38 Personnel Communications Buettner, M., Fisheries Biologist, U. S. Bureau of Reclamation, Klamath Project Office, 6600 Washburn Way, Klamath Falls, Oregon. Mayer, T., Hydrologist, U. S. Fish and Wildlife Service, Portland Regional Office, Lloyd Center, Portland, Oregon. Literature Cited Bellerud, B., and M. K. Saiki. 1995. Tolerance of larval and juvenile Lost River and shortnose suckers to high ph, ammonia concentration, and temperature, and to low dissolved oxygen concentration, National Biological Service, California Pacific Science Center, Dixon 103pp. Bennett, J. K. 1994. Bioassessment of irrigation drain water effects on aquatic resources in the Klamath Basin of California and Oregon. Ph. D Dissertation. University of Washington, Seattle. 197pp. Buettner, M. E., and G. Scoppettone. 1990. Life history and status of catostomids in Upper Klamath Lake, Oregon. National Fisheries Research Center, Reno Field Station, Reno, Nevada, 108pp. Coots, M. 1965. Occurrences of the Lost River sucker, Deltistes luxatus ( Cope), and shortnose sucker, Chasmistes brevirostris ( Cope), in Northern California. Calif. Fish and Game 51: 68- 73. Dileanis, P. D., S. K. Schwarzbach, and J. K. Bennett. 1996. Detailed study of water quality, bottom sediment, and biota associated with irrigation drainage in the Klamath Basin, California and Oregon, 1990- 92. U. S. Geological Survey, Water- Resources Investigations Report 95- 4232, 68pp. Falter, M. A., and J. J. Cech. 1991. Maximum pH tolerance of three Klamath Basin fishes. Copia 4: 1109- 1 111. Simon, D. C, G. R. Hoff, D. J. Logan, and D. F. Markle. 1996. Larval and juvenile ecology of Upper Klamath Lake suckers. Annual Report: 1995, Department of Fisheries and Wildlife, Oregon State Univ., Corvallis. 60pp. 39 Scoppettone, G. G., and M. E. Buettner. 1995. Information on population dynamics and life history of shortnose suckers ( Chasmistes brevirostris) and Lost River suckers ( Deltistes luxatus) in Tule and Clear Lakes. U. S. Geological Survey, Reno Field Station, Reno, Nevada. 79pp. U. S. Bureau of Reclamation. 1998. Lost River and shortnose sucker spawning in Lower Lost River, Oregon, U. S. Bureau of Reclamation, Klamath Falls, Oregon. 1 lpp. . 1993. Lost River { Deltistes luxatus) and shortnose { Chasmistes brevirostris) Sucker Recovery Plan. Portland, Oregon 108pp. Hydrolab Corporation. 1997. DataSondeR 4 and MiniSondeR water quality multiprobes, users manual. Hydrolab Corp., Austin, Texas.