Search
Search Results
-
3991. [Image] School-based Klamath River restoration project, phases V, VI & VII, 319h Clean Water Act
ABSTRACT Phase VI of the School-Based Klamath Restoration Project (319h) is a collaborative effort between seven Siskiyou County schools, the Siskiyou County Office of Education (SCOE), and the United ...Citation Citation
- Title:
- School-based Klamath River restoration project, phases V, VI & VII, 319h Clean Water Act
- Author:
- Rilling, Trudy S.
- Year:
- 2000, 2005
ABSTRACT Phase VI of the School-Based Klamath Restoration Project (319h) is a collaborative effort between seven Siskiyou County schools, the Siskiyou County Office of Education (SCOE), and the United States Fish and Wildlife Service (USFWS). The objectives of the project include: ? Expanding hands-on field science watershed education. ? Encouraging a sense of resource stewardship among students at all grade levels. ? Collecting quality data for inclusion in the 319h data base. ? Teaching applications of the scientific method. ? Providing on-going inservice training for teachers to increase the effectiveness of the project. Project tasks that were completed include acquisition and analysis of Klamath River Watershed Data, including river water temperatures, river cross sectional profiles and spawning ground surveys. Descriptions of methodology are included in the report. Many other watershed-related projects were undertaken by schools. In some cases the field data was collected and compiled by agency personnel. The spawning ground survey data collected by student volunteers was part of a project conducted by the California Department of Fish and Game and the U.S. Forest Service. Although a substantial amount of excellent work has been accomplished by the schools, the opportunity exists to improve the program at all levels. Increased field and technical support is needed to successfully integrate the goals of the project. Computer training for teachers and students is an essential component of the project, which would allow analysis of data and creation of web sites within classrooms. Data analysis and reporting is the critical component of the project that would provide students with a complete understanding of scientific research methodology. Providing a forum for communication between the 319h participants is another important area of the project that needs to be expanded. Travel time, mountainous topography, and intense winter storms can be barriers to travel in Siskiyou County. Communication helps to increase the level of standardization of data collection and transfer and gives teachers a chance to share successful ideas. Communication also sustains the positive momentum of the project, reinforcing the idea of working as a team towards establishing common goals for watershed education.
-
3992. [Image] Histopathological changes in gills of Lost River suckers (Deltistes luxatus) exposed to elevated ammonia and elevated pH
Lease, Hilary M., Histopathological Changes in Gills of Lost River Suckers (Deltistes luxatus) Exposed to Elevated Ammonia and Elevated pH, M.S., Department of Zoology and Physiology, December, 2000. ...Citation Citation
- Title:
- Histopathological changes in gills of Lost River suckers (Deltistes luxatus) exposed to elevated ammonia and elevated pH
- Author:
- Lease, Hilary Marian
- Year:
- 2000, 2008, 2005
Lease, Hilary M., Histopathological Changes in Gills of Lost River Suckers (Deltistes luxatus) Exposed to Elevated Ammonia and Elevated pH, M.S., Department of Zoology and Physiology, December, 2000. The Lost River sucker {Deltistes luxatus) is a federally listed, endangered fish species endemic to Upper Klamath Lake?a large, shallow hypereutrophic lake in southern Oregon. Sucker population declines in the lake over the past few decades are thought to be partly attributable to extreme water quality conditions, including elevated ammonia concentrations and elevated pH, that occur during summer cyanobacterial blooms. I analyzed structural changes in gills of larval Lost River suckers after they were exposed to elevated pH and elevated ammonia concentrations in chronic toxicity tests conducted in the laboratory. Histopathological changes in sucker lamellae were observed at ammonia concentrations that did not significantly decrease survival, growth, whole-body ion content, or swimming performance. Structural changes that I evaluated included O2 diffusion distance, lamellar thickness, hyperplasic and hypertrophic mucous cells, and infiltration of white blood cells into the lymphatic space. The increases in diffusion distance and lamellar thickness were statistically significant (P < 0.05). These gill changes are indicative of potentially compromised respiratory and ionoregulatory capacity. Because in this species gill structural changes appear to be a more sensitive indicator of stress in eutrophic water quality conditions than are the more traditional sublethal indices, gill histopathology might be useful for monitoring the health of Lost River suckers in Upper Klamath Lake.
-
3993. [Image] Trinity River Flow Evaluation: final report: a report to the Secretary , U.S. Department of the Interior
TRINITY RIVER FLOW EVALUATION - FINAL REPORT EXECUTIVE SUMMARY When Congress authorized construction of the Trinity River Division (TRD) of the Central Valley Project (CVP) in 1955, the expectation was ...Citation Citation
- Title:
- Trinity River Flow Evaluation: final report: a report to the Secretary , U.S. Department of the Interior
- Author:
- U.S. Fish and Wildlife Service; Arcata Fish and Wildlife Office; Hoopa Valley Tribe
- Year:
- 1999, 2006, 2005
TRINITY RIVER FLOW EVALUATION - FINAL REPORT EXECUTIVE SUMMARY When Congress authorized construction of the Trinity River Division (TRD) of the Central Valley Project (CVP) in 1955, the expectation was that surplus water could be exported to the Central Valley without harm to the fish and wildlife resources of the Trinity River. The TRD began operations in 1963, diverting up to 90 percent of the Trinity River's average annual yield at Lewiston, California. Access to 109 river miles of fish habitat and replenishment of coarse sediment from upstream river segments were permanently eliminated by Lewiston and Trinity Dams. Within a decade of completing the TRD, the adverse biological and geomorphic responses to TRD operations were obvious. Riverine habitats below Lewiston Dam degraded and salmon and steelhead populations noticeably declined. In 1981, the Secretary of the Interior (Secretary) directed that a Trinity River Flow Evaluation (TRFE) study be conducted to determine how to rest
-
3994. [Image] Forestry program for Oregon
This document sets forth the Board of Forestry's strategic vision for Oregon's forests for the next eight yearsCitation -
-
SIGNIFICANT FINDINGS The distribution of SOD2q values (measured sediment oxygen demand values corrected to 20°C [degrees Celsius]) had a median value of 1.6 g/m2/day (grams per square meter per day) in ...
Citation Citation
- Title:
- Sediment oxygen demand in Upper Klamath and Agency Lakes, Oregon, 1999
- Author:
- Wood, Tamara M.
- Year:
- 2001, 2005, 2004
SIGNIFICANT FINDINGS The distribution of SOD2q values (measured sediment oxygen demand values corrected to 20°C [degrees Celsius]) had a median value of 1.6 g/m2/day (grams per square meter per day) in the spring and 1.7 g/m2/day in the late summer. These values were well within the range of values in the literature for sites with similar sediment characteristics: primarily silty with at least a moderate amount of organic content. Over most of the lake there appears to be relatively little variation in SOD 14the interquartile range in values was 0.4 g/m2/day in the spring and 0.7 g/m2/day in the late summer. A significant exception was apparent in Ball Bay, where SOD in the late summer was greater than 10.2 g/m2/day. In the absence of primary production, an SOD of this magnitude could deplete the water column of oxygen in a few days. This measurement provided evidence that localized areas of very high SOD occur episodically in the bays, perhaps associated with large algal mats being trapped by the lake circulation patterns. A statistical test for a spring to late summer difference in the median values of SOD confirmed that SOD in the late summer (median value 1.7 g/m2/day) was significantly higher than in the spring (median value 1.2 g/m2/day). The difference was primarily due to seasonal changes in temperature; when SOD values were corrected to 20°C, there was no seasonal difference in the median values. There was no correlation between SOD20 and the sediment characteristics measured in this study: percent fines, organic carbon, and residue lost on ignition.
-
19p.; ill.; Cover title; "June 1997"; "Reprint September 1998"; [Washington, D.C.]: Supt. of Docs., U.S. G.P.O., 1999
Citation -
Ecology of shortnose and Lost River suckers in Tule Lake National Wildlife Refuge, California, Progress Report, April - November 1999 Lisa A. Hicks, U. S. Fish and Wildlife Service, Klamath Basin National ...
Citation Citation
- Title:
- Ecology of shortnose and Lost River suckers in Tule Lake National Wildlife Refuge, California : progress report, April - November 1999
- Author:
- Hicks, Lisa A.; Mauser, David M.; Beckstrand, John; Thomson, Dani
- Year:
- 2000, 2005
Ecology of shortnose and Lost River suckers in Tule Lake National Wildlife Refuge, California, Progress Report, April - November 1999 Lisa A. Hicks, U. S. Fish and Wildlife Service, Klamath Basin National Wildlife Refuge, Route 1, Box 74, Tulelake, CA 96134 David M. Mauser, U. S. Fish and Wildlife Service, Klamath Basin National Wildlife Refuge, Route 1, Box 74, Tulelake, CA 96134 John Beckstrand, U. S. Fish and Wildlife Service, Klamath Basin National Wildlife Refuge, Route 1, Box 74, Tulelake, CA 96134 Dani Thomson, U. S. Fish and Wildlife Service, Klamath Basin National Wildlife Refuge, Route 1, Box 74, Tulelake, CA 96134 Introduction The Lost River ( Deltistes luxatus) and shortnose ( Chasmistes brevirostris) suckers were federally listed as endangered species on July 18, 1988 ( Federal Register 53: 27130- 27134). Both sucker species are relatively long- lived, have a limited geographic range, and are endemic to the Upper Klamath Basin of Northern California and Southern Oregon. Habitat degradation from water diversions and loss of riparian and wetlands habitats associated with agricultural development within their historic range is believed to be the major reason for the species decline ( U. S. Fish and Wildlife Service 1993). A more detailed description on the life history, habitat requirements, and causes of decline of the species can be found in the Lost River and Shortnose Sucker Recovery Plan ( U. S. Fish and Wildlife Service 1993). Tule Lake National Wildlife Refuge ( NWR), established in 1928, consists of 2 return flow sumps ( Sump 1( A) and 1( B)) totaling 13,000 acres surrounded by 17,000 acres of intensively farmed lands ( Fig. 1). The refuge and surrounding private agricultural lands occupy the historic lake bed of Tule Lake, a 95,000 acre lake and marsh area that was reclaimed in the early 1900fs as part of the Klamath Reclamation Project. Current management of the refuge is directed by the Kuchel Act of 1964 which mandates the refuge be managed for the major purpose of waterfowl management but with optimal agricultural use that is consistent therewith. Both sumps are shallow ( 0.1 - 2.0 m) and consist of approximately 10,500 acres of open water with a 2,500 acre shallow (< 0.1 m) emergent marsh at the northeast corner of Sump 1( A). Tule Lake has been identified as a potential refugia for both sucker species ( U. S. Fish and Wildlife Service 1993). Tule T like National Wildlife Sump 3 Lease lands Field . Station Cocbetative Fanning Fields Area J Lease Lands Sump 2 I ease I , ands Figure 1. Tule Lake National Wildlife Refuge, California. During winter, water within the sumps is comprised primarily of local runoff and during summer water is comprised primarily of irrigation return flows, originating from Upper Klamath Lake. Summer water quality in the sumps is similar to other water bodies within the Upper Klamath Basin and is considered hypereutrophic ( Dileanis et al. 1996). Water quality problems include low dissolved oxygen ( DO) and high hydrogen ion concentrations ( pH) and unionized ammonia. Water quality in the Tule Lake sumps is directly affected by hypereutrophic conditions in Upper Klamath Lake ( U. S. Fish and Wildlife Service 1993). Studies conducted after publication of the Shortnose and Lost River Sucker Recovery Plan indicate that Tule Lake contains an estimated 159 ( 95% CI = 48- 289) shortnose and 105 ( 95% CI = 25- 175) Lost River suckers ( Scoppetone and Buettner 1995). Confidence intervals for these estimates are large because of small sample sizes and low rates of recapture. Recruitment rates for the Tule Lake population via spawning below Anderson- Rose Dam is low with significant larval production occurring only in 1995 ( monitoring occurred 1991- 99) ( M. Buettner, pers. comm). Entrainment from the irrigation system is likely the largest source offish for Tule Lake ( U. S. Bureau of Reclamation 1998). Both species of suckers in Tule lake are in good physical condition relative to fish in Clear Lake and Upper Klamath Lake with Tule Lake fish being generally heavier and exhibiting few if any problems with parasites or lamprey. ( Scoppetone and Buettner 1995). U. S. Bureau of Reclamation ( Reclamation) biologists tracked 10 radio- marked suckers in Tule Lake from 1993- 95. From these studies, specific use areas by time period were identified with over 99% of radio locations occurring in Sump 1( A). Of particular importance from these studies was identification of an over- summer site in the south central region of Sump 1( A) termed the ADonut Hole# ( DH). In early 1999, the U. S. Fish and Wildlife Service ( Service) proposed a wetland enhancement project on the 3,500 acre Sump 1( B). The project was designed to improve habitat for waterfowl and other associated wetland species as well as improve water quality through the conversion of Sump 1( B) from an open body of shallow water to an emergent year- round flooded wetland. The primary mechanism to create the desired habitat condition is a series of annual spring/ summer drawdowns thereby creating conditions suitable for germination of desired emergent plant species. Of principal concern in developing the project was the potential effects on suckers within the sumps. Because of the proximity of both sucker species in adjacent Sump 1( A), a project monitoring plan was developed to ascertain the potential effects of the Sump 1( B) Project on suckers and water quality. Our monitoring design benefitted from studies of water quality and sucker movements by Reclamation biologists from 1992- 95. This report summarizes findings of the first year= s pre- project monitoring effort ( April- December, 1999) relative to water quality and movements of radio- marked suckers. Objectives 1. Describe seasonal distribution and movement patterns of both sucker species in Tule Lake NWR and determine if fish movements have changed since initial studies by Reclamation biologists in 1993- 95. 2. Characterize water quality, in space and time, of areas used by adult suckers compared to areas which are not used. 3. Document and describe movements of radio- marked suckers to spawning areas below Anderson- Rose dam. 4. Determine whether recruitment of larvae and juvenile was occurring below Anderson- Rose Dam. Methods Monitoring radio- marked adult suckers In April and May, 1999, Reclamation biologists captured 14 suckers and surgically implanted radio- transmitters ( ATS, Isanti, MN) having a projected battery life of 12 months. Each transmitter had an external antennae that exited the body cavity near the lateral line of the fish. Eleven Lost River and 3 shortnose suckers were captured using trammel nets at the northwest corner of Sump 1( A) ( 9 fish) and immediately downstream of Anderson- Rose Dam on the Lost River ( 5 fish) ( Table 1). We located radio- marked fish via air thrust boats using a scanning receiver and 4- element yagi antennae. Fish were located fish 4 times/ month during March and April, 2 times/ month from May through September, and once per month from October through December. Fish not located via boat were located from fixed wing aircraft. We determined fish locations by moving as close as possible to undisturbed fish and recording locations with a Global Positioning System ( GPS). All GPS positions consisted of 180 rover points/ location and were differentially corrected via post processing software ( PFinder ver. 2.11). We recorded depth information at each fish location. To determine timing and duration of the spawning migration, we monitored radio-marked fish from vehicles on the east levee of the Lost River downstream of Anderson- Rose Dam. Table 1. Data from Lost River and shortnose suckers captured on Tule Lake National Wildlife Refuge, California and Anderson- Rose Dam, Oregon in 1999. RADIO TAG 165.043 165.063 165.073 165.103 165.084 165.094 164.641 164.863 164.494 164.854 165.054 164.845 164.763 164.914 CAPTURE DATE 4/ 2/ 99 4/ 2/ 99 4/ 2/ 99 4/ 2/ 99 4/ 2/ 99 4/ 2/ 99 4/ 9/ 99 4/ 2/ 99 4/ 9/ 99 4/ 30/ 99 5/ 5/ 99 5/ 5/ 99 5/ 18/ 99 5/ 18/ 99 CAPTURE LOCATION TULELAKE SUMP1A TULELAKE SUMP 1A TULELAKE SUMP 1A TULELAKE SUMP 1A TULELAKE SUMP1A TULELAKE SUMP 1A TULELAKE SUMP1A TULELAKE SUMP1A TULELAKE SUMP 1A ANDERSON ROSE DAM ANDERSON ROSE DAM ANDERSON ROSE DAM ANDERSON ROSE DAM ANDERSON ROSE DAM SPECIES LOST RIVER LOST RIVER LOST RIVER SHORTNOSE SHORTNOSE LOST RIVER SHORTNOSE LOST RIVER LOST RIVER LOST RIVER LOST RIVER LOST RIVER LOST RIVER LOST RIVER SEX FEMALE FEMALE FEMALE MALE FEMALE FEMALE FEMALE MALE FEMALE FEMALE MALE MALE MALE FEMALE WEIGHT NO DATA NO DATA NO DATA NO DATA NO DATA NO DATA 2830 g 1040 g 5260 g NO DATA 2214 g 1542g 2350 g 1811 g FORK LENGTH 777 mm 681 mm 754 mm 473 mm 523 mm 754 mm 544 mm 440 mm 775 mm 753 mm 556 mm 486 mm 594 mm 477 mm PIT TAG NO. 1F3E34432C 1F39064959 1F4C5A6754 1F07315752 1F31462743 1F4C5A6754 1F3726750F 1F36490062 1F37103466 1F390F1801 1F3E2A7702 1F36443235 1F30753309 1F390E6B2F Recruitment Reclamation biologists conducted larval and juvenile sucker surveys during May and June by sampling, visually and with dip nets, the emergent vegetation at the periphery of the Lost River downstream of Anderson- Rose Dam. Egg viability surveys were conducted in the gravel sediments immediately below the dam in May. Water quality We preselected water quality sampling sites ( Fig. 2, Table 2) in Sump 1( A) to correspond to adult sucker use areas as determined by studies of radio- marked adult suckers conducted by Reclamation in 1993- 95 ( Fig. 3). We selected 2 sites in Sump 1( B) which met or exceeded the minimum depth requirement (> 3ft) for both sucker species ( M. Buettner, pers. comm.) after referring to 1986 bathymetric maps. We attempted to obtain data from each site twice/ month. We moved 2 sample sites ( Donut Hole and Donut Hole Northwest) early in the summer and 1 site ( Donut Hole West) ( Fig. 2) during mid- summer to better represent summer use locations of radio- marked fish. From May through November, we measured water quality parameters ( dissolved oxygen ( DO), hydrogen ion concentration ( pH), and temperature (° C)) using DataSonde 3, 4 and 4a= s ( Hydrolab Corp., Austin, Texas) ( hereafter referred to as Hydrolabs) 26 cm ( 12 in) above the sediment. We suspended Hydrolabs, within PVC tubes, from metal fence posts driven into the sediment. Data were collected hourly over a 96 hr period at each monitoring site. We downloaded data from Hydrolabs using the Hyperterminal software package v. 690170 to a personal computer. Unit probes were cleaned and calibrated according to Hydrolab guidelines ( Hydrolab Corporation 1997) and local geographic standards. Using the same deployment schedule as with our Hydrolabs, we sampled turbidity at each site using a Portable Turbidimeter model 21 OOP ( Hach Corp., P. O. Box 389, Loveland, CO 80539). We collected water samples 27 cm ( 12 in) above the sediment at each sample site. We measured turbidity in NTUs, following the guidelines in the product manual and we measured water depth using a hand- crafted wooden pole, marked in measured increments. We summarized water quality data using Microsoft 8 EXCEL software v. 97 SR- 1 and SPSS for Windows release 9.0.0. Because of the apparent difference in summer water quality in the DH versus other sampling sites, data were summarized as DH sites and Non- DH ( NDH) sites. Tule Lake NWR Water Quality Monitoring 1999 MfSVTHOLE \ OKTIIH ' w Background Hvdrolon> Luke m Mudflats Uplands X Water Vionitonny Stations ( Hydrolafa sites) MK ker Radio \ ckmcin L. Hicks. D. .1 Beckitraod, K Miller, USFWS Background HydfOlOf} Sat'I Wetlands Invcnlon LSI Sh S Map Projection UTMZCM IO, WGS-* 4 By: L. Hkks. USFWSUSBR 02/ 00 i Figure 2. Water quality sample sites, Tule Lake National Wildlife Refuge, California, 1999. 8 Table 2. Characteristics of water quality sampling sites, Tule Lake National Wildlife Refuge, Tulelake, California, 1999. SITE NAME NORTHWEST SUMP 1A DONUT HOLE NORTHWEST DONUT HOLE WEST DONUT HOLE SOUTH DONUT HOLE DONUT HOLE EAST ENGLISH CHANNEL WEST SUMP IB EAST SUMP IB PUMP 10 SUMP 1A2 SITE ABBREVIATION NWS1A DHNWSlAor DHNW DHWEST DHSOUTH DHSlAorDH DHEAST ECSlAorEC WS1B ES1B PMP10 UTM N 4642199 4638316 4638881 4638144 4637299 4639024 4634604 4634153 4633948 4636635 UTME 620803 620542 321022 621355 621475 621971 625041 636647 628835 624748 DEPTH of MONITORING SITE ( m) 1 1.2 0.9 0.9 0.8 0.7 0.8 0.8 1.0 0.8 0.5 1 Depth of water at deployment 2 Pump 10 data will not be discussed in this document. Results Radio- marked suckers We located fish 231 times in locations similar to those determined by Reclamation biologists in 1993- 95 ( Figs 3- 4). Lost River and shortnose suckers did not appear to differentiate use of the sump by species; we located both species intermixed throughout the monitoring period. With the exception DH and DHNW ( Fig. 2), water quality sampling sites were close to seasonal sucker use areas. Of 14 suckers marked, mortality occurred in only 1 fish. A Lost River sucker (# X9) was tagged on 18 May at the Anderson Rose Dam; she was not located again until 23 days later on 9 June. From 9 June to 17 November, # X9 was located by signal within approximately 15 m of the original location based on the location data. It is likely that this fish died in early June within 2- 3 weeks of being radio- marked. It is unknown if this mortality was related to the stress of handling and marking or some other cause. April - May - In April- May, a period of maximum fish movements ( Figs. 5- 18), most suckers congregated in the AEnglish Channel ® between the sumps with a scattering offish located between the northwest corner of Sump 1( A) and the AEnglish Channel ® ( Fig. 4). Only 1 fish radio- marked in Tule Lake moved into the Lost River. This particular fish, a female shortnose sucker (# G9) was radio- marked in the northwest corner of Tule Lake on 9 April, was located in the AEnglish Channel ® on 14 April, and subsequently was located in Lost River below Anderson Rose Dam on 29 April and 6 May. Tule Lake Sucker Radio Telemetry \ pril 1993 - \! a> 1995 Hi tckwtstmd H) drohgy mm Marth/ Wi'lhiml • • River I Sucker Locations o Jan - Mar & Apr - May ° Jim - Sep • O t t - l h i 1 I . . . . . . ydtOl Ig) -: i '•'•, l: i M h - c .1 J I SI WS UtoBiihywwUy KkmrtiiB ••. iraOffia MapPinoiccii.- i rM2oni VM, S- » 4 • HJ I-. IKKV USffW& n SBB Figure 3. Locations of radio- marked suckers from studies conducted by U. S. Bureau of Reclamation, on Tule Lake National Wildlife Refuge, California, 1993- 1995. 10 Tule Lake NWR Sucker Radio Telemetry April - December 1999 Oregon California [ Sump 1A Background Hydrology J Lake Uplands SOcker Locations • Apr May o Jun - Sep • Oc! - Dec | Qanuthole area = * 466 acres ( manually est from fish bca Suckei EUdiQ Tdctrcter: L Hi cks, D TtccnsDn, : Nati Wedatd^ Inventory. USTWS i t Hi cfa, usFwsnrsBH o 2/ 00 Figure 4. Locations of radio- marked suckers on Tule Lake National Wildlife Refuge, California, 1999. 11 Tule Lake- Sucker Radio Telemetr> - 1999 MMti « phrnl Fish: Lost River Sucker " A9" Sex Female Length: 777 mm fag I ocation I ulc I ; ike Sump IA Tai: Dare: 04/ 02 99 Vlort. Date: 3 - O 5 ni 0 5 - 1 ni ( Surface Fixation - 4034.9( 1') Lain' ihpth 1 - 15m Itydrolah tUm » t tm fcdarl .' i rein: l. llni. i. Becb- rmc l^ . I M I ^ I V I M . Kl; nn: nli limm Xvtup,- :, rr, k, I M •'• - \ * e BMb% « ldry KIWWHI I t em ,^ wnOi-... I SB I Background Hy* » : 4.. .. , „ | WCIIWKIJ faivewior^. I'SI A S >• • ••• i •• i MZcne IC ' •..-• .: i;% i n . , i s , u s Figure 5. Movements of radio- marked sucker A9 on Tule Lake National Wildlife Refuge, California, 1999. 12 Tule Lake- Sucker Radio Telemetry ~- 1999 Hsh ], ost River Sucker"! Sc\ Female Length: UK] mm Tag Location [ We Lake Sump IA IML Dace U4/ O? W Mort Date: • i Khrr( m » depth) • 1 Mwrvl. Will. 1.1,1 I |- l Muil I t * 3 - O 5 m 0 5 - t rn ( Surtax i: Nation - 4O34. W) flyJrttlaff SiKker RacfcTclemdn: I. IliduU. Bccks CompK. i BFW8 I. a.- Mil ,. l klmulklfaun \ « » OI.. . I MM Background llyfrotogv \ « bonB| W ctlands inv « « or., U8FWS Map IVv^ vi ... i M ,. !• ' ••"• . I:-. | || ... i JFWS Figure 6. Movements of radio- marked sucker B9 on Tule Lake National Wildlife Refuge, California, 1999. 13 Tule Lake- Sucker Radio Telemetry - 1999 Fidi Lost River Sucker * C9" Sex Male Length: 619 mm Tag Location I ule Lake Sump IA Fag Date: M/ 02 w VIon. Date: { Surface Fixation - 4II34. W) tiat- ttffawmf th- frohf(\ • • Khii i> nJv|> th) H i \ iM, vh\ wtl,..., i UplniKi Lak mm MU. I n. i 3 - 0 5 ni 0 5 - 1 ru • I n kaAo Tckwdn: LHkfcaJ. Beduimd P HMUWM K V'l « • .|: I- II: I-| I I n i ii Cwnpk. I 8FWS Klmwil.[ ten< •• . : M . . . I M : mind I l > * o t i c \ Ntttaaal Wetlands Inventory* I ^| •.!•••• • • . • I -. I \ | . , K 1 1 . i •• » •• -; !:•• I II . I SFWS r Mil . Figure 7. Movements of radio- marked sucker C9 on Tule Lake National Wildlife Refuge, California, 1999. 14 Tule Lake- Sucker Radio Telemetry - 1999 Haf kgnm n BB Rh « ' i MM. Fish Shortnose Sucker " l) l>" Sex Male Length: 473 nun ail Location: I ale Lake Sump IA Tag Date 04/ 02/ 99 Mort. Date: I Surface Fixation - 41> 34. lW) /....'.:• Depth Mi, I lbtx 0- OSm ^ ^ 0 5 - 1 rti - I - ' I •' • • ' ' • I HkfcU. lUbrxilHil) I ! . . . ! - . K Mil M KlttiHtfiBttk K « Aig « : . , - , - , L . I M ''. •• Ifydrolah Kit,-* i., i.- . il ... (.. , , , i , , •. . ; „ , . . , M ! - U a d ^ r t w n d ! ! > * • ••'• • t n | XVctinjKlt [ mcTrt « . T\. • SFWS I • • . . • • , , • l:% | n ...... i M A S * £*> Figure 8. Movements of radio- marked sucker D9 on Tule Lake National Wildlife Refuge, California, 1999. 15 Tule Lake- Sucker Radio Telemetry - 1999 Fish Shortnose Sucker T39" Sc\ Female Length: 523 mm rag Location I ule I ake Sump IA rag Date M/ 02 w Date: • 1.1 I i) I 1-.. 1 • | i i . . I. llcct. M m i l l ) ] Compl- • ' "* I '• S 5> NJUOIWI Wetlands b i v c m u r y I IS I » S • ••• I " I ••. l/. nc It. i . . . : - . , ' II-. | || ..... Figure 9. Movements of radio- marked sucker E9 on Tule Lake National Wildlife Refuge, California, 1999. 16 Tule Lake- Sucker Radio Telemetry - 1999 Fish Lost River Sucker " IV Sc\ female Length: 754 mm Tag Location Tule Lake Sump 1A * rag Date 040; 99 Vkirt Date: ( Surface Fixation - 4( 134.90') Hat ground Hydrology U • : • • Rhtr< iM » < Jvpfh) • iM.., lll » r • i M. tvh\ VHl,, na 0.0,5m Uphml » 0S- 1rt. 1 - 1 5 IT » 1 £ m fackcrRadk> 1 r .. In: UfisfcaJ. Ikvkwjjjui P » •, K V, 1 • l: m: rli M a Jfcflifc* CorapUv I IFWS Uydrolth sit,- s i , i t \ t, il*> m. f n Klmwlh tfewn .\ wn < » flfa . I SBR K o t o ^ : \ ai,,, na| Wctljmd* bivcm^ f • I SFWS Map hV^ vl .. . I MZpftClO Cony aid I;-, i n , . UWTOS Figure 10. Movements of radio- marked sucker F9 on Tule Lake National Wildlife Refuge, California, 1999. 17 Tule Lake- Sucker Radio Telemetry - 1999 Fish Shortnose Sucker " Q9" I cm ale Length: 544mm I. IL1 Location Tule Lake Sump IA * rag Date 04/ 09/ 99 Mori ( Surface rloaliun - I II . . I. \'-.-\-- m.' I-K V i ! l • l : n i : r l l ! - i i : ii : . r , : . | , . I s|\ VS KlmuHi Btom Aivs 4 M1K. I SBR \ j i > i m l Wetlands invcnlon i 5FWS M. « ;. ' - . . I - . I M / . „ . • | » . I II , • I SFWS BB Ki^ i imi M \ hrvh\\ ilhiml Upland Lais Otfttk MuiJ Hals Figure 11. Movements of radio- marked sucker G9 on Tule Lake National Wildlife Refuge, California, 1999. 18 Tule Lake- Sucker Radio Telemetry ~ 1999 • Jit" Fish Sex Length: Tag Location: Tag Date: Sh oi1no so Male 440 mm Tule 1 < ikc 04/ 09/ 99 / Sucker Sump " H9" IA f tif( rtitiini / / i Kh< < 1- 1 . ri. l Mud FliitK 0 - 0 5 m 05 - 1 ni < SurfiKi 1 , - > 18m K V , , • l; , - n : , l , 5 , , , : . • „ • , '• • ' • • : ' k • ' s | ' ' ' s K i i. l I-. . . . tVu. I M i ^ ' ^ \ tbonn\ Wetl « nd « faiv « mor>. I . \ I A • » - i I M „, | i. Ih | || , , I M Figure 12. Movements of radio- marked sucker H9 on Tule Lake National Wildlife Refuge, California, 1999. 19 Tule Lake- Sucker Radio Telemetry - 1999 I- isii Lost River Sucker " 1 Sc\ Female Length: 775 mm Tag Location: Tule Lake Sump IA Tag Dale: 04/ 09/ 99 Mort. Date: ( Surface I* k^ atinn Tckmrtn: l.|| uk. I. K J y me l> I..: II> M K •-.•. I - I : . . , : Compkv • BPWS "' ••' Klmwlbl? ti » m A* MOffice I SBR IvckuioRv : \ atxin » l Wetlands biv « Mory. I > I / i < n k j f M U U l f i x • • • ' < • . • • Khri ( IM » tlr|> rh) Mat vh Wit I HI ii I LpbmJ Figure 13. Movements of radio- marked sucker 19 on Tule Lake National Wildlife Refuge, California, 1999. 20 Tule Lake- Sucker Radio Telemetry - 1999 Fish: I- osi River Sucker " P9" Sc\ Female Length: 7^ ' m m lag Location Anderson Rose Dam Tag Dale: 04/ 30/ 99 Mort. Date: ( Surface bk'talkm - 4UJ4. W) % mkm i .' i eraetn: |.| ikk* J. lkvl> « uui I) . . . . i - K '•.'. . - i . . r . . i . BMte Rvtug « , « ., .. . . - . M V . . Compk. i IPWa I « l.- . ll ,. t ,.. , , , | , , •. . „ ,. . | M i • E* K* gr° umi I K v H , ^ htaHml Wctl » nd » knvMori i -- I - s ^ • •• I •• I M i . , - It. > •—•• . i;-. i II . . i MWN Figure 14. Movements of radio- marked sucker P9 on Tule Lake National Wildlife Refuge, California, 1999. 21 Tule Lake- Sucker Radio Telemetry - 1999 Fish Lost River Sucker " i;(>" Sex Male Length: 556mm Tag Location Anderson Rose Dam Tag Date 05 05 w Mort. Date: ( Surface H o at ion - - MM4. W) • i • i n. t . i. ikJ^•. m..- I) . M. HV*. K Vi . • hnrnflh ii » m Hvfil^- '" I - I K ••. . I" K i r •• . M ... I MiM \-, ..,.•. \ , ,,.| v. , |,,.|. ( r. v : , f . l MH • . ! ., I M „ |. Figure 15. Movements of radio- marked sucker U9 on Tule Lake National Wildlife Refuge, California, 1999. 22 Tule Lake- Sucker Radio Telemetry - 1999 Fish: Lost River Sucker " W Sox: Male Leagth 486 mm \ AII Location; Anderson Rose Dam Tag Date: 05/ 05/ 99 Mort. Date: ( SurfiK- c Floaiiun 4 « . U. W| •• ' • •• ' • ; • ' ' ' ' I I I . . • 1. Bedu HI.- D . K V I " , I . < l: iMi; iTh : - i • : .1 MIK! KI. HH I - • • > • . • • \ 1 i i i v . v l . r i l - i r . v : • ! • . 1 • . . . 1 . • 1 \ | , , c 1. Figure 16. Movements of radio- marked sucker V9 on Tule Lake National Wildlife Refuge, California, 1999. 23 Tule Lake- Sucker Radio Telemetrv - 1999 Fish: Lost River Sticker " W(>" Sex: Male Length 594 nun I nil Location: Anderson Rose Dam Tag Date: 05/ 18/ 99 Meet. Date ( Surface H o at inn 4< i. U/) i » ') - ' • ' I ' : ' - ' • I Hid • i. Bcvl. v.' im: P . , i iikr. Klanwlh B* oi R< tu^ : . . r v . k v I M •'•- ' -*•• Mil - >•> • KlMmth IViim .\ wn 0 1 . . . I SBR g \ ^ m u l Wcllmls En^ :• r I ^ | V \ • • • I - i I M/ V. u- It; 1 ••••:•• .-.' II-. W Figure 17. Movements of radio- marked sucker W9 on Tule Lake National Wildlife Refuge, California, 1999. 24 Tule Lake- Sucker Radio Telemetry - 1999 Fish: Lost River Sucker " X9" Sex: Female Length 477 mm Tag Location; Anderson Rose Dam Tag Date: 05,1899 Mori. Date, suspected in June 1999 Hn i in Mat* h Will •. 1. fackn RadioTclenvtn; i. tfidbU. lkvk « ramLI>. r* Mmw « t K ','. . hmtdth B* m R^ UB* CompK- • n •'• • B % VJI < Kflb . I M i ,• h> tir> l Wetlands Envcntun. I SFft'S \ I , \ ' I K I I | , ... | s.| , \ s Figure 18. Movements of radio- marked sucker X9 on Tule Lake National Wildlife Refuge, California, 1999. 25 June - September - During this period, nearly all suckers ( particularly during July and August) could be found in the DH at the south central portion of Sump 1( A) ( Fig. 4). By connecting the outermost locations of approximately 90% of radio locations, the calculated area of the DH was 188 ha. Suckers using the DH were found in depths ranging from 1.0- 1.3 m ( 39- 50 in) ( Fig. 19). September - December - During this period suckers moved from the DH to the northwest corner of Sump 1( A). As of the writing of this report, ( February 15, 2000) the 13 remaining fish occupy the same area. Recruitment Surveys by Reclamation biologists for larval and juvenile suckers in the Lost River below Anderson- Rose Dam failed to document the presence young of the year fish. Below is a summary of surveys: Date 5/ 25/ 99 6/ 2/ 99 6/ 10/ 99 Result Searches for eggs in gravel below Anderson- Rose Dam revealed eggs in 4 of 5 sites, some of which were viable. Larval surveys conducted at 3 sites ( visual and dip net) from the dam to the wooden bridge were negative. Larval surveys conducted at 5 sites including the dam, 2 and 1 mile downstream, the wooden bridge, and East- West Road were negative. Larval surveys conducted at 2 sites downstream of dam were negative. Water quality pHBln general, pH values were less variable in the DH then areas outside this region ( Fig. 20). In all areas, median pH values remained below 9.5 until early June at which time values outside the DH were frequently above 10.0. pH values were particularly high (> 10.0) in late June through August in ESIB and NWS1A and periodically in the EC and WS1B. pH values in the DH and areas adjacent, remained below 10.0 through September; however, there was a gradual rise in pH values in DH sites from May through September. In late September and early October, DH pH values exceeded all other sites. rem/ reratareBTemperatures in all regions reached a peak in late July through early August with no discernible difference between DH or NDH sites ( Fig. 21). Dissolved oxvgenBDonut Hole sampling station s differed in dissolved oxygen characteristics relative to other areas of the sumps. During the June through August period DH sites ranged from 4.5 to 11.2 mg/ 1 while areas outside this region ranged from 1.1 mg/ 1 to 18.2 mg/ 1 ( Fig. 21). Toward November DH and NDH sites became similar DO dynamics ( Fig. 21). 26 Turbiditvllln general, turbidity values appeared greater in the DH versus areas outside, although some sites particularly in Sump 1( B) were quite variable particularly in June and July. This may have been due to the large amount of filamentous algae in Sump 1( B), potentially interfering with the measurement. Turbidity rose sharply at sites by late October and November ( Fig. 23- 24). 20 >• 1 5 O UJ a UJ DC 10 0 39 41 43 45 47 More DEPTH Figure 19. Water depth used by radio- marked suckers in the " Donut Hole" ( June- August), Tule Lake NWR. California. 27 BJll I U r S o I! Figure 20. pH data collected from " Donut Hole" and non- Donut Hole water quality sampling sites on Tule Lake National Wildlife Refuge, California, 1999. Box and whisker plots represent the median, 25- 75* and 10- 90* percentiles, and outliers. 28 temp rC) S 2 £ ' I j 1 II i 9 E 9 S Figure 21. Water temperatures collected at " Donut Hole" and non- Donut Hole sites on Tule Lake National Wildlife Refuge, California, 1999. Box and whisker plots represent the median, 25- 75^ and 10- 90^ percentiles, and outliers. 29 do ( mgfl) I do ( mg/ l) OP> !*• WKamm 01900 gGBM s ' S:' TP" » S i I ! if Figure 22. Dissolved oxygen concentrations at " Donut Hole" and non- Donut Hole sites on Tule Lake National Wildlife Refuge, California, 1999. Box and whisker plots represent the median, 25- 75* and 10- 90* percentiles, and outliers. 30 260.0 -. 240.0 220.0 - 200 0 180.0 => 160.0 H 140.0 - z 120.0 100.0 - 80.0 60.0 40.0 20.0 n n - » NT" —•— Depth ( m) fc= _ 6/ 2 107.00 0.8 Donut Hole Northwest - — .^^^ 6/ 7 77.20 0.8 H •—-^^ ' '—^ 6/ 14 25.30 0.8 6/ 21 24.80 0.8 - 1.0 o o O CJl depth ( m) 260.0 -, 240.0 220 0 200.0 180.0 - 2 160.0 z 140.0 - 120.0 100.0 - 80.0 - 60.0 40.0 20 0 0.0 » NTU — a— Depth ( m) , •=— mmm •= « a 6/ 22 44.00 0.9 Donut Hole West — « — — » - 6/ 28 26.60 08 •— 7/ 6 19.90 08 . ^ m — _ _ _ _ _ _ _ 7/ 13 25.70 0.8 • - _ — r- • 7/ 19 51.40 0.8 1.0 0.5 £ a. T3 0.0 260 0 240.0 - 220.0 - 200.0 - 180.0 i « n n _ H 140.0 - z 120 0 ^ 100.0 • 80 0 60.0 40.0 20.0 - u. u » NTU — m— Depth ( m) 6/ 22 93.70 0.8 6/ 28 95.40 0.7 Donut Hole East 7/ 6 72.70 0.7 7/ 13 32.30 0.7 —•'•"-""* 7/ 19 50.20 0.5 -*"— 7/ 28 62.50 0.8 8/ 2 73.30 0.8 \ ^ 8/ 10 18.55 0.8 8/ 19 50.20 0.8 8/ 25 22.20 0.8 8/ 31 58.67 0.7 \ 9/ 8 14.38 0.8 9/ 14 11.03 0.8 9/ 20 7.00 0.7 9/ 29 7.80 0.7 j / A - 10/ 25 51.00 0.7 t - fT u 11/ 23 210.00 0.6 1 0 - 0.5 JZ jepi - 0.0 Figure 23. Turbidity at " Donut Hole" sites on Tule Lake National Wildlife Refuge, California, May to November 1999. 31 260.0 i 240.0 220.0 200.0 180.0 3 160.0 £ 140.0 - 120.0 100.0 80.0 60.0 40.0 20.0 0.0 » NTU —•— Depth ( m) • ^ 6/ 2 81.10 0.8 Donut Hole - — - ^ 6/ 7 49.20 0.8 — • 6/ 14 21.50 0.8 =— 1 6/ 21 24.80 0.8 r 1 0 o p d en depth ( m) 260 0 240.0 • 220.0 - 200.0 . 180.0 - K 160.0 • z 140.0 - 120.0 100.0 80.0 . 60.0 - 40.0 - 20.0 0.0 . t K » TII — a— Depth ( m) B — • 7/ 21 53.30 0.8 .— m-— 7/ 28 40.50 0.8 Donut Hole South _—• 8/ 2 56.80 0 9 » - ^ 8/ 10 17.13 0.9 *—• 8/ 18 19.70 0 8 8/ 25 21.73 0.9 ^ \ 8/ 31 64.90 0.8 9/ 8 21.27 0.8 9/ 14 20.80 0.8 9/ 20 29.97 0.8 ^ - • - ^ 9/ 29 49.30 0.8 / / 10/ 25 33.70 0.8 / / 11/ 23 170.00 0.7 1 0 o o d en depth ( m) Figure 23 ( cont.). Turbidity at " Donut Hole" sites on Tule Lake National Wildlife Refuge, California, May- November, 1999. 32 260.0 -, 240.0 - 220.0 200.0 180.0 - 160.0 Z> 140.0 \ z 120.0 - z 100.0 80.0 60.0 40.0 20.0 - 0.0 *_ NTU • depth ( m) y 5/ 26 12.30 0.7 6/ 2 58.70 0.8 A- 6/ 7 20.30 0.9 / / 6/ 21 57.40 0.8 // A A\\ 6/ 28 239.0C 0.8 V\ East Sump 1B J s in 81.70 0.7 : / I 7/ 12 10.40 1.0 | A / \ J I s f 7/ 27 228.00 1.0 \ - V \ 8/ 2 88.00 0.8 8/ 10 40.00 0.9 8/ 18 38.17 0.8 8/ 31 11.30 0.7 9/ 9 7.00 0.7 9/ 14 6.17 0.7 9/ 20 5.83 0.7 • / 10/ 25 44.80 1.0 * 4-— \ ft . 11/ 23 186.00 0.5 1.0 ? e Q. 0.5 • 0.0 260.0 n 240.0 - 220.0 200.0 180.0 160.0 D 140.0 1— 120 0 z 100^ 0 80.0 60.0 An n 20.0 - 0.0 - —+— NTU —•— depth ( m) —•— 5/ 26 13.70 1.0 _, • —- « - 6/ 2 57.30 1.1 --•— ' \ 6/ 7 41.10 1.1 6/ 21 18.70 1.0 —•— / \ 6/ 28 138.0( 1.0 \ \ / ¥ West Sump 1B - . • — • / 7/ 7 ) 29.90 1.0 A \\ 7/ 12 88.90 1.0 k / \ / 7/ 27 19.00 0.9 / \ / \ 8/ 2 73.00 1.0 L \ \ 8/ 10 5.47 1.0 8/ 18 6.40 1.0 8/ 31 9.20 1.0 9/ 9 8.58 1.0 9/ 14 8.37 0.9 9/ 20 11.73 0.9 / / 10/ 25 39.50 0.7 f 11/ 23 85.00 0.8 1 5 sz Q. - 0 . 5 • - 0.0 260 0 240.0 220.0 - 200.0 - 180.0 160.0 3 140.0 t ; 120.0 100.0 80.0 - 60.0 An n . 20.0 0.0 » NT" — m— Depth ( m) 6/ 2 46.50 0.8 -~ « — 6/ 7 16.10 0.9 —•—. 6/ 14 39.00 0.8 / 6/ 22 9.71 0.8 English Channel Sump 1A 6/ 28 6.79 0.8 \ ^ _ 7/ 13 17.90 0.8 7/ 20 17.60 0.8 7/ 28 26.80 0.8 8/ 10 4.80 0.9 8/ 19 7.33 0.8 8/ 25 6.50 0.8 8/ 31 7.10 0.8 9/ 8 13.34 0.8 ==•== 9/ 20 15.50 0.8 J 9/ 29 22.60 0.7 — y / 10/ 25 98.70 0.8 11/ 23 146.00 0.8 1 5 - 1.0 — 0.5 - g 0.0 260 0 240.0 220 0 - 200.0 - 180.0 - 160.0 => 140.0 - £ 120.0 mnn . 60.0 40.0 - 20.0 u. u J •— NTU —•— Depth ( m) I 6/ 2 36.50 1.2 —•— 6 / 7 12.60 1.2 6/ 14 13.10 1.2 y 6/ 28 7.40 1.1 7/ 6 71.60 1.0 Northwest Sump 1A —•— 7/ 13 5.27 1.1 — » — —•— 7/ 19 28.50 1.1 7/ 28 20.50 1.2 8/ 2 32.10 1.2 ^- B—' 8/ 19 4.50 1.1 / 8/ 25 52.87 1.1 A ' \ 8/ 31 115.67 1.2 ="-•— \ —•*=; 9/ 8 4.10 1.1 1 4- 9/ 14 7.89 1.1 —•— J I \ 9/ 20 12.43 1.1 — « ^ 10/ 25 180.00 1.1 11/ 23 164.00 0.9 1 S d jpth ( m) • 0.5 - o - 0.0 Figure 24. Turbidity at non- Donut Hole sites on Tule Lake National Wildlife Refuge, California, 1999. 33 Discussion Water Quality The area of the DH was delineated from plotted June through September locations of radio-marked suckers ( approximately 188 ha.). The location of the DH could also be seen as an area of relatively turbid water from aerial photographs from August 1998 ( Fig. 25) as well as aerial photographs taken in 1984. It is possible that the combination of 2 factors may cause the observed turbidity in the DH. First, seeps or springs may be present in the area which result in more favorable water quality during summer which attracts suckers as well as other fish species to the area. The resultant concentration offish ( suckers and chubs) may stir the sediments during feeding activities, thereby creating the observed turbidity. The additional turbidity in the DH may inhibit light penetration and the production of algae, thereby reducing photo synthetically elevated pH and the extreme minimum and maximums in DO typical of may water bodies in the Klamath Basin including Tule Lake ( Dileanis et al. 1996). The rise in turbidity at all sites in fall is likely due to the break down of rooted aquatic vegetation which then allows for wind induced wave action to stir the sediments. Other than the DH, all other sites had dense concentrations of rooted aquatic plants and/ or filamentous green algae during summer. June to September DO and pH dynamics in the DH appeared different than at NDH sites ( Figs. 20 and 22). The difference was greatest in early summer with the difference becoming smaller by late summer and essentially disappearing by fall. Whether this water quality difference was a result of the more turbid waters or inflow from springs is unknown. However, attempts by Service hydrologists to model inflows, evapotranspiration, and outflows from the sumps have resulted in a positive imbalance of approximately 21,000 acre- feet of water from April through September. This positive imbalance is greatest in spring and early summer, gradually lessening by summer and essentially disappearing by fall ( Tim Mayer, pers. comm.). If this inflow is occurring, it may explain differences in summer water quality between DH and NDH sites. June to September water quality in the DH may be critical to the over summer survival of suckers in Tule Lake as pH and DO in NDH sites during summer often exceeded the tolerance limits for the fish. DO and pH levels at DH sites were less variable and did not reach the extremes that were reached in NDH sites. The lowest DO measured during June through September at DH sites were 4.83 mg/ 1 ( DHWEST) and 4.96 mg/ 1 ( DHEAST). DO and pH during summer from this study were similar to values collected by Reclamation in 1992 ( Table 3). Buettner and Scoppettone ( 1990) found juvenile suckers only where DO was above 4.5 mg/ 1. It is currently believed that adult suckers become stressed at DO levels below 4.0 mg/ 1 with mortality occurring at or below 2.0 mg/ 1 ( M. Buettner, pers. comm.). The relatively high over- summer survival of radio- marked suckers, compared to suckers radio- marked in Upper Klamath Lake ( M. Buettner, pers. comm), is further evidence of suitable summer water quality conditions in the DH on Tule Lake. 34 Figure 25. " Donut Hole" in Sump 1( A) of Tule Lake NWR. Note visible turbidity of area. 35 Table 3. Mean dissolved oxygen, pH, conductivity, and temperature on Tule Lake National Wildlife Refuge, California, July and August 1992. Data are from 2 sites; 1 site each in Sump 1( A) ( within the ADonut Hole@) and 1( B). All data were from 96 hour continuous readings from Hydrolabs. Data were collected at intervals of 1- 2 hours. ( Data summarized from U. S. Bureau of Reclamation). Site Sump 1( A) Sump ( IB) Depth ( M) < 0.5 0.51- 1.5 > 1.5 < 0.5 0.51- 1.5 > 1.5 pH (± SD) ( 1200- 1700 hrs) 9.32 ± 0.83 n= 81 9.22 ± 0.93 n= 26 8.30 ± 0.71 n= 10 9.65 + 0.44 n= 21 9.79 ± 0.45 n= 7 No data Temp ° C (± SD) ( 1200- 1700 hrs) 21.85 ± 2.84 n= 81 21.53 ± 2.46 n= 26 19.90 ± 1.59 n= 10 22.96+ 1.10 n= 21 22.11 ± 0.51 n= 7 No data Conductivity 500 ± 266 n= 81 598 ± 277 n= 26 859 ± 694 628 ± 148 n= 21 571 ± 74 n= 7 No data DO1 Oof 31 days - - 8 of 21 days - - 1 Proportion of monitored days having a minimum dissolved oxygen level below 5 mg/ 1. ( Data from U. S. Bureau of Reclamation) pH levels in the DH generally remained below 10.0 whereas non DH sites frequently exceeded 10.0 ( Fig. 19). Falter and Cech ( 1991) determined a maximum pH tolerance in shortnose suckers of 9.55+ 0.43 under laboratory conditions, levels generally exceeded in June - September at non DH sites and some DH sites in late summer. Buettner and Scoppettone ( 1990) found juvenile fish in Upper Klamath Lake largely at sites with pH < 9.0, as did Simon et al. ( 1996) in 1994. However, in 1995, Simon et al. ( 1996) found that most juvenile fish ( 54%) were captured in areas of higher pH (> 10.0). Laboratory studies indicate significant mortality of larval and juvenile fish at high pH values (> 9.55) ( Falter and Cech 1991) and 9.92- 10.46 ( Bellerud and Saiki 1995). Previous water quality and fish health studies on the refuge determined that water quality conditions were stressful to aquatic life and was resulting in a high ( up to 37%) proportion offish with deformities ( Dileanis et al. 1996), however, studies of sucker ecology in Tule Lake have indicated that individual fish in the lake have a high condition factor and are free of external parasites ( Scoppettone and Buettner 1995). Bennet ( 1994) recognized this apparent inconsistency, stating, A... the observation that Tule Lake suckers are in better physical condition than Upper Klamath Lake suckers indicates that certain areas of the aquatic system may be of particular importance for the recovery of those species. ® In the case of Tule Lake this Acertain area@ is likely the DH.. Suckers in Tule Lake may be in good condition because of their limited population size, the abundant food resources in this lake, and adequate water quality ( in the DH) to survive the summer period. 36 Sucker movements Although, suckers were relatively sedentary during most periods of the year, they exhibited the ability to make long distance moves in relatively short periods of time, particularly during the April spawning period. The northwest corner of Sump 1( A) receives about 90% of the inflow from the Lost River and spring winds on Tule Lake tend to move large quantities of water through the AEnglish Channels back and forth between Sump 1( A) and 1( B). This movement of water at both locations may explain the movement of fish observed in April and May. Suckers may be attracted to both locations when seeking spawning habitat in spring. Recruitment During the April marking period, most captured suckers appeared to be physiologically ready to spawn; however, only one fish moved into the river. Of 10 radio- marked fish monitored by Reclamation in 1993- 95 no fish attempted to run the Lost River. This low proportion offish that attempt to spawn may have one or several causes or a combination, including: 1. Stress of handling and implanting radio- transmitters so close to the spawning season may prevent fish from becoming reproductively active. 2. Under normal conditions, only a small proportion of Tule Lake suckers may attempt to spawn in any particular year. 3. Flow conditions in or at the mouth of the Lost River may be inadequate to draw the fish into the river. 4. A shallow bar (< 0.3 m) of deposited silt exists between the lake and the mouth of the river which may form a physical barrier to the fish. At the present time, a mandated flow of 30 cfs is released below Anderson- Rose Dam to provide spawning habitat at the Dam. Although this flow is intended to provide suitable spawning conditions at the Dam, these flows may be inadequate to entice fish into the river. It is likely that the historic spring flows in the Lost River were many times higher than current regulated flows. However, given that the fish are largely unsuccessful in spawning and risk additional mortality traversing the river, adult survival may be enhanced by remaining in the lake. Scoppettone and Buettner ( 1995) also observed no radio- marked fish from Clear Lake to move into Willow Creek during the spring spawning period. In this case the authors attributed this result to either capture stress or low stream flows during spring. 37 Habitat use Although the DH is relatively shallow relative to other areas of Tule Lake, use of the DH may be mandatory to ensure over- summer survival. Although deeper waters are available to the fish, especially in the northwest corner of Sump 1( A), DO levels, in particular, likely preclude their use. Suckers did not move out of the DH until October when DO levels began to rise with cooler water temperatures. Although, Sump 1( B) contained suitable water depths and water quality conditions in fall, no suckers were located in this area. It is possible that suckers may prefer not to pass through the pipes connecting the Sumps or the proximity and flow from the Lost River in the northwest corner of Sump 1( A) may make this area more attractive as an over- winter habitat area. The relative lack of water depth in the DH as well as other areas of the sumps is becoming of increasing concern because of the loss of water depth through sedimentation. If suckers require a minimum of 3 ft of water, as is current believed ( M. Buettner, pers. comm.), current rates of sedimentation in the sumps threaten the future suitability of Tule Lake for suckers. Based on a comparison of bathymetric surveys conducted by Reclamation in 1958 and again in 1986, sedimentation has been steadily reducing the water holding capacity of both sumps. Between the 1958 and 1986 surveys ( 28 years), Sump 1( A) has lost 22.4% of its water capacity and Sump 1( B) has lost 30.8% of its capacity due to sedimentation. This would indicate a total mean sedimentation of 11.8 inches over this time period ( U. S. Bureau of Reclamation, unpubl. rep). Over the last several years, an attempt has been made to store additional water in Tule Lake during summer by raising water levels above 4034.60 ft. This increase in water elevations ( between 4034.60 and 4034.90 ft) has somewhat mitigated the loss of depth through sedimentation. However, without reinforcing and raising the levees around the sumps, there is a limit as to how high water elevations can rise. At elevation 4035.50 ft., operating regulations require breaching the sumps into overflow areas ( Sump 2 or 3). Although increased summer operating levels may assist the fish, they may also increase the risk of a flood event requiring the breaching of the sumps with potentially negative impacts to the fish. Acknowledgements The authors are indebted to fisheries biologist from the U. S. Bureau of Reclamation, Klamath Project, especially M. Buettner, B. Peck, and M. Green whom provided and surgically implanted radio transmitters, captured adult suckers, located fish from fixed wing aircraft, and assisted with study design. K. Miller from Klamath Basin National Wildlife Refuge collected telemetry, water quality, and GPS data and ensured all data were collected and coordinated consistent with study design. T. Mayer provide training in the calibration, deployment, and downloading of data from the hydrolabs and assisted with interpretation of water quality data. 38 Personnel Communications Buettner, M., Fisheries Biologist, U. S. Bureau of Reclamation, Klamath Project Office, 6600 Washburn Way, Klamath Falls, Oregon. Mayer, T., Hydrologist, U. S. Fish and Wildlife Service, Portland Regional Office, Lloyd Center, Portland, Oregon. Literature Cited Bellerud, B., and M. K. Saiki. 1995. Tolerance of larval and juvenile Lost River and shortnose suckers to high ph, ammonia concentration, and temperature, and to low dissolved oxygen concentration, National Biological Service, California Pacific Science Center, Dixon 103pp. Bennett, J. K. 1994. Bioassessment of irrigation drain water effects on aquatic resources in the Klamath Basin of California and Oregon. Ph. D Dissertation. University of Washington, Seattle. 197pp. Buettner, M. E., and G. Scoppettone. 1990. Life history and status of catostomids in Upper Klamath Lake, Oregon. National Fisheries Research Center, Reno Field Station, Reno, Nevada, 108pp. Coots, M. 1965. Occurrences of the Lost River sucker, Deltistes luxatus ( Cope), and shortnose sucker, Chasmistes brevirostris ( Cope), in Northern California. Calif. Fish and Game 51: 68- 73. Dileanis, P. D., S. K. Schwarzbach, and J. K. Bennett. 1996. Detailed study of water quality, bottom sediment, and biota associated with irrigation drainage in the Klamath Basin, California and Oregon, 1990- 92. U. S. Geological Survey, Water- Resources Investigations Report 95- 4232, 68pp. Falter, M. A., and J. J. Cech. 1991. Maximum pH tolerance of three Klamath Basin fishes. Copia 4: 1109- 1 111. Simon, D. C, G. R. Hoff, D. J. Logan, and D. F. Markle. 1996. Larval and juvenile ecology of Upper Klamath Lake suckers. Annual Report: 1995, Department of Fisheries and Wildlife, Oregon State Univ., Corvallis. 60pp. 39 Scoppettone, G. G., and M. E. Buettner. 1995. Information on population dynamics and life history of shortnose suckers ( Chasmistes brevirostris) and Lost River suckers ( Deltistes luxatus) in Tule and Clear Lakes. U. S. Geological Survey, Reno Field Station, Reno, Nevada. 79pp. U. S. Bureau of Reclamation. 1998. Lost River and shortnose sucker spawning in Lower Lost River, Oregon, U. S. Bureau of Reclamation, Klamath Falls, Oregon. 1 lpp. . 1993. Lost River { Deltistes luxatus) and shortnose { Chasmistes brevirostris) Sucker Recovery Plan. Portland, Oregon 108pp. Hydrolab Corporation. 1997. DataSondeR 4 and MiniSondeR water quality multiprobes, users manual. Hydrolab Corp., Austin, Texas.
-
3999. [Image] Upper Klamath Basin : opportunities for conserving and sustaining natural resources on private lands
1 i California Oregon Cover Photo: Lower Klamath National Wildlife Refuge at sunset Tupper Ansel Blake/ USFWS Map Detail Area: Upper Klamath River Basin ii T he Klamath River Basin presents numerous ...Citation Citation
- Title:
- Upper Klamath Basin : opportunities for conserving and sustaining natural resources on private lands
- Author:
- United States. Natural Resources Conservation Service
- Year:
- 2004, 2005
1 i California Oregon Cover Photo: Lower Klamath National Wildlife Refuge at sunset Tupper Ansel Blake/ USFWS Map Detail Area: Upper Klamath River Basin ii T he Klamath River Basin presents numerous challenges as well as opportunities for its many water users. For years, farmers and ranchers in the basin have recognized the vital role they play in the health of their watershed. Working with conservation districts, the Natural Resources Conservation Service ( NRCS) and others, land managers continue to proactively find ways to enhance natural resources in the basin, benefiting wildlife and the environment. However, as it has across the western United States, drought hit home in the Klamath for those who depend on every drop of water to sustain their livelihood, culture and community. In the spring of 2001, the combination of drought and the impact of the Endangered Species Act triggered a shutdown of irrigation water during the growing season, drying up water resources to more than 2,000 farms and ranches. NRCS, in cooperation with local conservation districts, provided a quick infusion of technical assistance and $ 2 million in cost- share funding for cover crops through the Emergency Watershed Protection Program. As cover crops took hold, the seeds of a long- term solution took root in the NRCS/ conservation district partnership. The ability of the local office to receive funding, engage community members and other partners, plan resource improvements, implement actions, and monitor success proved to be an invaluable asset for the community. Helping private landowners develop and apply practical, common- sense solutions to complex resource issues will be the challenge of the conservation partnership well into the future. USDA, in concert with the locally led conservation districts, will continue to play a critical role by delivering technical and financial assistance to Klamath Basin farmers and ranchers. The Rapid Subbasin Assessments that follow are the first step in that process. The assessments are designed to help local decision- makers determine where investments in conservation will best benefit wildlife habitat, agriculture and other land uses in a compatible manner. It is our goal to provide a comprehensive overview of resource challenges and opportunities in the basin, and help decision- makers to prioritize their investments in areas that will best sustain multiple use of natural resources in the basin now and in the future. Sincerely, Robert J. Graham Charles W. Bell, State Conservationist State Conservationist Oregon NRCS California NRCS iii iv Table of Contents Map of the Upper Klamath Basin ................................ i Letter from OR and CA State Conservationists .......... ii Overview of the Upper Klamath Basin ........................ 1 Background ................................................................................... 1 Upper Klamath Basin Description ............................................ 2 The Role of Agriculture in the Basin ........................................ 3 Rapid Subbasin Assessments ...................................................... 4 Private Lands Conservation Accomplishments ...................... 6 Summary of Conservation Opportunities ............................... 7 Water Conservation ...................................................................... 8 Improving Water Quality ........................................................... 10 Increasing Water Storage/ Yield ............................................... 11 Enhancing Fish and Wildlife Habitat ...................................... 12 Overview of Conservation Effectiveness .............................. 13 Comparative Benefit: Water Demand ..................................... 15 Comparative Benefit: Water Quality ....................................... 15 Comparative Benefit: Water Storage/ Yield ............................ 16 Comparative Benefit: Habitat/ Fish Survival .......................... 16 Sprague River Subbasin .............................................. 18 Resource Concerns & Conservation Accomplishments ...... 19 Conservation Opportunities ..................................................... 20 Williamson River Subbasin ......................................... 22 Resource Concerns & Conservation Accomplishments ...... 23 Priority Conservation Opportunities ....................................... 24 Upper Klamath Lake Subbasin .................................. 26 Resource Concerns & Conservation Accomplishments ...... 27 Priority Conservation Opportunities ....................................... 28 Upper Lost River Subbasin ......................................... 30 Resource Concerns & Conservation Accomplishments ...... 31 Priority Conservation Opportunities ....................................... 32 Middle Lost River Subbasin ....................................... 34 Resource Concerns & Conservation Accomplishments ...... 35 Priority Conservation Opportunities ....................................... 36 Tulelake Subbasin ...................................................... 38 Resource Concerns & Conservation Accomplishments ...... 39 Priority Conservation Opportunities ....................................... 40 Butte Valley Subbasin ................................................. 42 Resource Concerns & Conservation Accomplishments ...... 43 Priority Conservation Opportunities ....................................... 44 Upper Klamath River East Subbasin .......................... 46 Resource Concerns & Conservation Accomplishments ...... 47 Priority Conservation Opportunities ....................................... 48 1 Overview of the Upper Klamath Basin Upper Klamath Basin Quick Facts • The Upper Klamath Basin includes the Klamath, Williamson, Sprague, Lost, and Wood rivers, among others • Several state and federal wildlife refuges are a part of the Upper Klamath Basin • Migratory birds like the American White Pelican and the Red- necked Grebe use croplands in the Klamath Basin as a stop on the Pacific Flyway • Deer and elk graze on wheat and barley fields and pheasants use both crop and rangelands for their nesting and feeding grounds Background In a landscape formed by seemingly endless cycles of drought and flood, it’s no wonder that for hundreds of years, competition for water has dominated the landscape of the West. Stretching across southern Oregon and northern California, the Klamath Basin has become synonymous with the water challenges that western water users face. As one example, agricultural commodities that need irrigation water to thrive – providing Americans with the cheapest domestic food supply in the world, face competition from the critical water needs of sucker fish, salmon and other threatened and endangered species. While that competition is understandable, more and more, conservation leaders in all industries have come to recognize that these water needs aren’t necessarily at odds with one another, and can in fact be compatible. While an example of the challenges today’s agricultural producers and conservationists face, the Klamath Basin has emerged as an example of how diverse interests can work together successfully. 2 Overview of the Upper Klamath Basin Upper Klamath Basin Description The Upper Klamath Basin is an area of high desert, wetlands, and the Klamath River. The river extends 250 miles from its headwaters at Upper Klamath Lake in south central Oregon to the west coast of northern California. The Upper Klamath Basin includes the US Bureau of Reclamation’s ( USBR) Klamath Project Area and the drainage area above Irongate Dam on the Klamath River. The basin’s lakes, marshes, and wetlands host an abundance of plant and animal species and include national wildlife refuges, parks, and forests. Agricultural production began around the turn of the 20th century, and with the creation of the Klamath Irrigation District in 1905, water diversions for irrigation began in earnest. A portion of these irrigated lands are in the USBR’s irrigation project. The ‘ project area,’ as it is commonly called, includes 188,000 of the 502,000 acres of private irrigated land in the basin. This includes lands leased from the various wildlife refuges that are supplied with water by the USBR. Privately irrigated acreages can vary from year to year, depending on USBR contracts and annual cropping cycles. In comparison, the majority of the private irrigated land - about 314,000 acres - in the basin is located outside the project area. Upper Klamath Basin Quick Facts: • Over 2.2 million acres are privately owned in the Upper Klamath Basin • 188,000 of the irrigated acres are in the US Bureau of Reclamation’s Irrigation Project • Approximately 502,000 acres of privately owned lands are irrigated • 314,000 acres of irrigated lands are outside the Project area 3 Overview of the Upper Klamath Basin The Role of Agriculture in the Basin Agricultural lands play a key role in a healthy ecosystem. Located on the Pacific Flyway, migratory birds like the American White Pelican and the Red- Necked Grebe use croplands in the Klamath Basin as an important feeding and resting stop. Deer graze on wheat and barley fields, and pheasants use both crop and rangelands for their nesting and feeding grounds. Progressive conservation leaders recognize that farming and fish and wildlife habitat are not mutually exclusive. Well- maintained farmland creates fish and wildlife habitat, contributing to a healthy watershed. They also recognize that opportunities will always exist to improve the condition of natural resources in the basin. To address those opportunities, conservation leaders in Oregon’s Klamath Falls Soil and Water Conservation District and California’s Lava Beds/ Butte Valley Resource Conservation District have proactively identified four key priorities tied to natural resource conservation. The districts asked experts at the USDA’s Natural Resources Conservation Service to help them develop a plan to determine what could be done on- farm to conserve water, increase water storage, improve water quality, and enhance fish and wildlife habitat. While so much of the attention to date in the Klamath Basin has been focused on water demand, these conservation leaders recognize demand is only one piece of the puzzle. Comprehensive solutions must also address water quality, storage and wildlife habitat. Conservation District Priorities 1) Conserve Water 2) Increase Water Storage 3) Improve Water Quality 4) Enhance Fish & Wildlife Habitat 4 Rapid Subbasin Assessments Conserving natural resources is the ultimate goal throughout the basin, and its success hinges on long- term solutions. At the request of local conservation districts, NRCS undertook an 18- month study of resource concerns, challenges and opportunities throughout the Upper Klamath Basin. The study was not intended to provide a detailed, quantitative analysis of the impacts of conservation work, but rather, to provide an initial estimate of where conservation investments would best address the districts’ four priority resource concerns. Beginning in the spring of 2002, NRCS planners collected information to enable the conservation districts, agencies, organizations, farmers, ranchers and others to make informed decisions in a timely manner about conservation and resource management in the basin. These Rapid Subbasin Assessments are intended to help leaders set priorities and determine the best actions to achieve their goals. As a part of the rapid subbasin assessment process, eight subbasins were delineated ( see map at left). A watershed planning team traveled through each subbasin, inventorying agricultural areas, identifying conservation opportunities and current levels of resource management, and estimating the impacts of these opportunities on the Conservation in the Upper Klamath Basin 5 Conservation in the Upper Klamath Basin conservation districts’ priority resource concerns. They focused their recommendations on areas that would provide the best benefit to the wide array of stakeholders in the Upper Klamath Basin. They also identified a number of socio- economic factors that must be taken into consideration when helping producers adapt to new management styles and conservation activities. Through NRCS, conservation districts and other federal, state and local entities, private land managers are working to identify ways they can more efficiently use – and share – the water they need. In the face of increasingly complex and politically polarized circumstances, a clear purpose and direction has arisen. The commitment of the local conservation partnership to identify the impacts of water shortages and to find solutions that will improve natural resource conservation will be key to the long- term viability of both endangered species and industries in the Upper Klamath Basin. The information that follows provides a summary of the conservation challenges and opportunities that NRCS staff found in their assessment. Recommendations for where financial and other resources can best be invested to improve natural resources, while sustaining the economy of the Upper Klamath Basin, are also identified. 6 Conservation in the Upper Klamath Basin Private Lands Conservation Accomplishments One component necessary to understanding future conservation opportunities in the basin is to recognize the current conservation work of private land managers. An indicator of these efforts is the work that has been undertaken in partnership with NRCS and the local conservation districts. In federal fiscal years 2002 and 2003, Upper Klamath Basin farmers and ranchers improved resource conditions on 18,877 acres of privately owned agricultural lands, with assistance from NRCS and the conservation districts. During this time, private land managers have worked with the conservation districts in the basin to: • improve the condition of 11,800 acres of grazing lands • conserve water and improve water quality on 13,656 acres • restore and establish 4,138 acres of wetlands and riparian areas • improve 281 acres of forest stands • establish resource management systems on 1,351 acres of cropland These conservation efforts were accomplished with a combination of private, state and federal funding. 7 Conservation in the Upper Klamath Basin Summary of Conservation Opportunities In addition to recognizing current conservation activities, the assessments define what can be accomplished with a strong conservation partnership in the Upper Klamath Basin. All too often, the debate about multi- use of water in the basin has focused on ways to reduce water demand. However, the basin’s many water users - including fish and wildlife - benefit just as much from improvements to water quality, water storage and wildlife habitat. Taken together, the recommendations that follow seek to utilize a comprehensive approach to all four resource priorities - with the goal of contributing to a sustainable, multi- use water system. While quantification of the results of conservation work in these four areas is difficult, there is no question that a comprehensive approach to natural resource improvement in the Upper Klamath Basin will result in accumulative long- term benefits for endangered fish species, wildlife habitat, agriculture, urban and other water uses. Agriculture cannot undertake these efforts alone. Private landowners and the general public both benefit from natural resources conservation in the Upper Klamath Basin. Because of this, public and private sources of funding from in and outside the region are necessary. Solutions of this magnitude also come with other social, political, and cultural costs. Upper Klamath Basin Quick Facts: • 1,400 farm families live in the Upper Klamath Basin • The Upper Klamath Basin is home to sucker fish, bull trout and redband trout 8 Conservation in the Upper Klamath Basin For example, all stakeholders in the Upper Klamath Basin need to identify and address social, economic, and cultural resource- based values they have historically enjoyed. Politically, there must be resolution and agreement on water rights, endangered species, and water quality. Water Conservation Because few water use measurements have been taken in the past, it is difficult to quantify where specific water efficiencies can be gained. Throughout the Upper Klamath Basin, water that leaves one irrigated field generally re- enters streams or enters the groundwater, providing the opportunity for it to be utilized again later. Because of this, water delivery systems both in and outside the USBR project area are generally efficient. As a result, the most significant benefit of reducing water demand on individual farms is an improvement in water quality and reduction in water temperatures, rather than an increase in available water. 9 Conservation in the Upper Klamath Basin Conservation measures that reduce water demand on private agricultural lands can be accomplished in a variety of ways. New technologies for managing when and where water is applied on crop and pasture lands will help to ensure that water is only applied when it is of the best benefit to the plant. Water conservation opportunities include improving irrigation water-use efficiency, retaining and conserving drainage water, and making use of new technologies that more accurately forecast the impacts of drought and floods. The subbasin assessments indicate an opportunity to conserve water and improve water quality on 130,000 acres of irrigated lands within the USBR project. Outside the project area there is an opportunity for water conservation on approximately 220,000 irrigated acres. If all potential conservation practices are implemented on all irrigated lands, on- farm water use efficiency could increase by up to 25 percent in the Upper Klamath Basin. A potential two to five percent increase in water yield could be achieved by increasing management in upland range and forestland areas. In all cases, these are preliminary estimates and require validation. This estimate does not account for evaporation, transpiration, seepage or other loses that may occur at the sites receiving conserved water nor does it evaluate irrigation delivery or conveyance efficiencies. Tupper Ansel Blake/ USFWS 10 Conservation in the Upper Klamath Basin This level of water conservation cannot be reached without a concerted federal/ state/ private partnership that works together to apply water conservation practices in targeted areas throughout the Upper Klamath Basin. Improving Water Quality Water quality has a direct impact on many fish and wildlife species. Within the Upper Klamath Basin, most rivers and lakes do not meet federally mandated Clean Water Act standards for temperature, dissolved oxygen, pH, or other pollutants. Water quality is affected by water temperature, low in- stream flows and the condition of adjacent land riparian areas, among other items. Private landowners are just one of many groups who have an opportunity to improve water quality throughout the basin. Water quality improvement opportunities on private agricultural lands in the basin range from improving the management of livestock near streams and rivers to utilizing new technologies that track pest and weed cycles to ensure that pesticides are only applied when they will be most effective. Water conservation practices that reduce tailwater runoff from irrigated fields can provide extensive improvements in water quality. 11 Conservation in the Upper Klamath Basin Increasing Water Storage/ Yield In recent years, drought has been a large contributing factor to reduced water levels in the Upper Klamath Basin. One solution to address low water flows would be to store water for times of water shortage. There are at least two challenges to this solution: finding a place to store water and finding water to store. To evaluate this option, potential storage values were calculated for 41 years of record from 1961 to 2002. This analysis reinforced the observation that, as has been seen in recent years, drought years normally occur in a multi- year cycle. Because of this, in the years where extra water is most needed, it is often not available from previous years to store. One promising, small- scale, water storage solution may lie in subsurface irrigation water storage in suitable locations, such as the Tulelake Subbasin. In this scenario, there exists a potential to store water in the soil profile and reduce irrigation water demand during the irrigation season. Another option for subsurface storage of water includes the restoration of streams and their surrounding wetlands and riparian areas. This can increase the “ sponge” effect allowing for the slow release of water through the long, dry summer months. Tupper Ansel Blake/ USFWS 12 Conservation in the Upper Klamath Basin Enhancing Fish and Wildlife Habitat The Upper Klamath Basin is home to a wide variety of aquatic and terrestrial species of wildlife and fish. Much of the water used in the Klamath wildlife refuges and associated marshes, ponds, streams and wetlands originates in the Upper Klamath Lake Subbasin. The Klamath Basin wildlife refuges provide a stopover for 85 percent of the ducks, geese, and other birds that migrate through the Pacific Flyway from Alaska to South America. Streams in the Upper Klamath Basin provide spawning and rearing habitat to threatened and endangered suckers and bull trout, as well as redband trout, which is listed as a species of concern by the US Fish and Wildlife Service. Several streams are highly valued “ catch and release” sport fisheries. There is high landowner and public interest in restoring and maintaining riparian habitat along these streams. Many of the conservation opportunities outlined under water conservation and water quality provide direct benefits to fish and wildlife as well. In addition, creating and restoring wetland areas, planting trees and developing wildlife habitat along the edges of crop fields all contribute to enhancing wildlife habitat in the basin. Tupper Ansel Blake/ USFWS 13 Conservation in the Upper Klamath Basin Overview of Conservation Effectiveness In order for the Upper Klamath Basin to successfully move forward with solutions, agriculturists, environmentalists, Tribes, government agencies, organizations, and others need to develop unified leadership to arrive at a common vision for the future. In addition, stakeholders and others must commit to a long- term investment of public and private funding as well as other resources. Based on the Upper Klamath Basin Rapid Subbasin Assessments, the Oregon and California NRCS planning staff rated the potential benefit of recommended conservation practices and resource management systems based on the conservation districts’ four resource priorities. Many state and federal agencies have invested in conservation work throughout the basin. While the recommendations in this document focus on private land and agriculture, the assessments can also be applied to help prioritize conservation practices on other land uses basin- wide. Overall, based on the planning team’s analysis, conservation activities in the Sprague River Subbasin would produce the greatest benefit, and conservation practices in the Upper Klamath River East Subbasin would yield the least Tupper Ansel Blake/ USFWS overall benefit based on the conservation district’s priorities. 14 Conservation in the Upper Klamath Basin While recognizing that any science- based conservation focus in the Upper Klamath Basin would be beneficial, the charts on pages 18- 19 specifically focus on work that can be accomplished on private lands. They provide a breakdown of recommended conservation practices on each of the conservation districts’ priorities by subbasin. For example, the water demand chart shows that investing in conservation practices in the Sprague River Subbasin has the greatest potential for reducing agriculture’s water demand by implementing improved irrigation practices. The Sprague also provides the best opportunity to address water quality and wildlife habitat. Investment in conservation activities in the Tulelake and the Upper Klamath Lake subbasins offers the greatest potential to address water storage/ yield. Investing in Conservation: Enabling farmers, ranchers and other private land managers to successfully address the four resource priorities will require: • The adoption of conservation on 350,000 acres of private farmland, range, and forests, • Financial resources estimated at $ 200 million for installation and another $ 27 million annually to operate, and • Twenty or more years to complete with the current financial and technical resources available. Tupper Ansel Blake/ USFWS 15 Water Demand Comparative Benefit of Applied Conservation Practices by Subbasin Upper Klamath River East Riparian/ Wetland Agronomic Forest & Range Grazing Irrigation Conservation Practices Williamson Upper Klamath Lake Upper Lost River Butte Valley Middle Lost River Tulelake Sprague Sprague Upper Klamath Lake Williamson Butte Valley Tulelake Middle Lost River Upper Lost River Upper Klamath River East Water Quality Comparative Benefit of Applied Conservation Practices by Subbasin Riparian/ Wetland Agronomic Forest & Range Grazing Irrigation Conservation Practices Comparative Benefit: Water Demand The chart at left provides an overview of the comparative benefit by subbasin of various conservation practices that reduce water demand. Based on research completed by NRCS planning staff, the greatest potential to reduce water demand exists by implementing irrigation and riparian/ wetland conservation practices in the Sprague Subbasin. This is followed by implementing agronomic and irrigation conservation practices in Tulelake. There is no measurable water demand benefit achieved by implementing conservation practices in the Upper Klamath River East Subbasin. Comparative Benefit: Water Quality The chart at left provides an overview of the comparative benefit by subbasin of various conservation practices that improve water quality. Based on research completed by NRCS planning staff, the greatest potential to improve water quality occurs when riparian/ wetland, grazing and irrigation conservation practices are implemented in the Sprague Subbasin. In comparison, no measurable water quality benefits are achieved by implementing conservation practices in Butte Valley or the Upper Klamath River East subbasins. Conservation in the Upper Klamath Basin 16 Wildlife Habitat Comparative Benefit of Applied Conservation Practices by Subbasin Riparian/ Wetland Agronomic Forest & Range Grazing Irrigation Conservation Practices Williamson Sprague Butte Valley Tulelake Middle Lost River Upper Lost River Upper Klamath Lake Upper Klamath River East Upper Klamath River East Williamson Sprague Upper Klamath Lake Tulelake Middle Lost River Upper Lost River Butte Valley Water Storage Comparative Benefit of Applied Conservation Practices by Subbasin Riparian/ Wetland Agronomic Forest & Range Grazing Irrigation Conservation Practices Comparative Benefit: Water Storage/ Yield The chart at right provides an overview of the comparative benefit by subbasin of various conservation practices that enhance water storage and yield. Based on research completed by NRCS planning staff, the greatest potential to enhance water storage and yield occurs by implementing riparian/ wetland, forest and range conservation practices in the Upper Klamath Lake Subbasin. In comparison, the Tulelake Subbasin gains water yield through agronomic practices like subsurface drains to allow for winter irrigation. Overall, implementing forest and range practices in most subbasins will result in greater water yield within the soil profile and water table. Comparative Benefit: Habitat/ Fish Survival The chart at right provides an overview of the comparative benefit by subbasin of various conservation practices that improve wildlife habitat and fish survival. Based on research completed by NRCS planning staff, the greatest potential to improve habitat is in the Sprague Subbasin, using wetland/ riparian, forest, range and irrigation practices. In comparison, no measurable habitat benefits are achieved by implementing additional conservation practices in the Middle Lost River, Tulelake, Butte Valley or Upper Klamath River subbasins. Conservation in the Upper Klamath Basin 17 Tim McCabe/ NRCS 18 The Sprague River Subbasin is located 25 miles northeast of Klamath Falls and covers approximately 1.02 million acres. Forested mountain ridges enclose the Sprague River Valley, which includes large marshes, meadows and irrigated pasture. Juniper and sagebrush steppes dominate rangeland. Irrigated Pasture is the predominant land use in the Sprague River Valley. Approximately 65 percent of the water used for irrigation is diverted from streams, and 35 percent is pumped from wells. Flooding is the most common form of irrigation. Most diversions do not have fish screens and lack devices to measure water deliveries. Overall irrigation application efficiencies are low. Private forest and rangelands in the Sprague River subbasin are generally used for livestock grazing. Most forest stands are significantly overstocked with trees, and rangeland has been heavily encroached by Western Juniper. Pasture condition is generally poor to fair. The riparian areas within pastures have little to no riparian vegetation and high, eroding banks. Wildlife habitat in most of the upper reaches of the Sprague River and its major tributaries appears to be fairly stable, indicating good watershed condition. However, there are considerable habitat improvements that can be made in the lower portion of the basin. Sprague River Subbasin Water & Wetlands: 2,949 Range: 137,869 Irrigated Pasture/ Grass Hay: 81,650 Forest/ Mixed: 240,050 Sprague River Subbasin Agricultural Land Use/ Cover 19 Resource Concerns Water quality is the major resource concern in the Sprague River Subbasin, directly impacting fish and wildlife habitat throughout the Upper Klamath Basin. Lost River and shortnose suckers, interior redband and bull trout are key fish species present in the subbasin. All species are listed as Endangered Species Act threatened, candidate, or species of concern. The Sprague River has been identified as an important stream for both spawning and rearing habitat for suckers. Loss of riparian habitat, fish entrapment and fish migration impediments have also been identified as resource concerns in the Sprague River Subbasin. Conservation Accomplishments In the Sprague River Subbasin during the last two years, significant conservation progress has been made. With assistance from NRCS and local conservation districts, land managers have improved the condition of 2,153 acres of grazing land, improved irrigation water management on 903 acres of irrigated land, and have restored 1,644 acres of riparian and wetlands areas. Fencing and riparian area restoration has been initiated or installed by private land managers with assistance from NRCS, US Fish & Wildlife Service and others on approximately 50 miles of stream and several thousand additional riparian and wetland acres. Sprague River Subbasin Land Ownership Private Lands 448,200 Public Lands 573,100 Total Land Area: 1,021,300 Irrigated Acres USBR Project: 0 Non- USBR: 61,600 Total: 61,600 20 Conservation Opportunities Water Quality & Wildlife Habitat: Riparian restoration can be accomplished by converting pastures to permanent riparian wildlife lands or establishing riparian vegetation. Riparian pasture units should be managed as a part of an overall grazing plan with cross- fencing and off- stream water for livestock. Forest stands should be managed to ensure optimum health of both the trees and grazed understory. Thinning overstocked trees and controlling juniper on rangelands are both effective management opportunities. Water Demand: Irrigation water management, including measuring water use and scheduling irrigation will help managers to maintain base river flows through late summer and early fall. Efficiencies can also be gained by leveling land, lining or piping irrigation ditches and incorporating tailwater recovery systems. Conversion from flood to sprinkler irrigation is also beneficial. Sprague River Subbasin Sprague River Subbasin Comparative Benefit of Applied Conservation Practices Water Demand Wildlife Habitat Water Storage Water Quality Riparian/ Wetland Agronomic Forest & Range Grazing Irrigation Conservation Practices Conservation Investment Projected Conservation Acres to be Treated* Irrigated Land ............ 34,500 Range & Forestland 164,400 Wildlife Habitat ........... 2,400 Estimated Installation Cost Irrigated Land .......................$ 10,948,000 Range & Forestland .......................$ 31,305,000 Wildlife Habitat .........................$ 4,779,000 Estimated Annual Operation, Maintenance & Management Cost Irrigated Land .........................$ 1,768,000 Range & Forestland .........................$ 1,665,000 Wildlife Habitat ............................$ 133,000 * Based on conservation need and projected participation rates. 21 Tim McCabe/ NRCS 22 Covering about 928,000 acres, the Williamson River Subbasin is the principal tributary for Upper Klamath Lake. Combined, the Williamson and Sprague River subbasins make up 79 percent of the lake’s total drainage area. The Winema National Forest and Klamath Falls National Wildlife Refuge account for most of the public land in the subbasin. Irrigated pasture is the dominant private agricultural land use. Pasture is almost entirely flood irrigated. Ninety percent is diverted from streams, while groundwater supplies ten percent. Most diversions do not have fish screens and lack devices to measure water deliveries. Although overall irrigation application efficiency is low, additional water in the water table helps to subirrigate pastures. In addition, the proximity of these pastures to rivers and streams allows most excess diverted water to return to the system for reuse. Private forest and rangelands make up most of the private land in the basin. Approximately 80 percent of forestlands are used for grazing. Private forestland is in poor to fair condition; over half of the stands are significantly overstocked with trees. Wildlife habitat has faced considerable degradation in the past. Of the 48 miles of stream that are degraded in the subbasin, restoration efforts have been initiated on approximately 23 miles. Williamson River Subbasin Water & Wetlands: 19,700 Range: 2,600 Irrigated Pasture/ Grass Hay: 81,650 Forest/ Mixed: 225,300 Williamson River Subbasin Agricultural Land Use/ Cover Irrigated Alfalfa: 1,100 23 Water quality relating to elevated stream temperatures is a major resource concern in the Williamson River Subbasin, directly impacting fish and wildlife habitat throughout the Upper Klamath Basin. In 1988, when the Lost River and Shortnose suckers were listed as endangered, the Williamson and Sprague River runs were estimated to have declined by as much as 95 percent during the previous twenty- year period. Important sucker habitat has diminished by nearly 50 percent in the lower reaches and near the mouth of the Williamson River. This has reduced the amount of larval sucker spawning and rearing habitat. Conservation Accomplishments Significant conservation progress has been made in this subbasin. Land managers have improved 500 acres of grazing lands, 1,000 acres of irrigated lands, 235 acres of forestlands and have restored 112 acres of riparian and wetland areas. Heightened landowner awareness of resource concerns and increasing agency, organization, and individual efforts will help this trend to continue. Of the 48 miles of stream that are degraded in the subbasin, private land managers are working with the US Fish and Wildlife Service and others to restore 23 miles. The Nature Conservancy is restoring approximately 3,200 acres of wetlands, and plans to restore another 3,411 acres at the mouth of the Williamson River. Williamson River Subbasin Resource Concerns Land Ownership Private Lands 309,400 Public Lands 618,800 Total Land Area: 928,200 Irrigated Acres USBR Project: 0 Non- USBR: 65,100 Total: 65,100 24 Williamson River Subbasin Williamson River Comparative Benefit of Applied Conservation Practices Water Demand Wildlife Habitat Water Storage Water Quality Riparian/ Wetland Agronomic Forest & Range Grazing Irrigation Conservation Practices Wildlife Habitat & Water Quality: Riparian area and wetland habitat restoration and management provide the best opportunity to improve water quality in the Williamson River Subbasin. This can be accomplished by converting lands from irrigated agriculture to wildlife habitat or creating riparian pasture systems. Wetland and riparian areas still utilize water. However, this work may reduce total water demand depending on how lands are managed. Water Demand: Thinning forest stands and managing grazing areas by adding cross fences and off- stream water for livestock can yield more water to meet downstream needs. This will also result in enhanced wildlife habitat and improved water quality in area streams. In addition, forest stand improvements reduce the potential for catastrophic fire. Priority Conservation Opportunities Conservation Investment Projected Conservation Acres to be Treated* Irrigated Land ............ 52,300 Range & Forestland ... 71,200 Wildlife Habitat .............. 200 Estimated Installation Cost Irrigated Land .......................$ 12,863,000 Range & Forestland .......................$ 17,290,000 Wildlife Habitat ............................$ 338,000 Estimated Annual Operation, Maintenance & Management Cost Irrigated Land .........................$ 2,663,000 Range & Forestland ............................$ 669,000 Wildlife Habitat ..............................$ 11,000 * Based on conservation need and projected participation rates. 25 Tupper Ansel Blake/ USFWS 26 The Upper Klamath Lake Subbasin covers 465,300 acres from Crater Lake to the outlet of Upper Klamath Lake into the Link River. Historically, some 43,000 acres of wetlands surrounded Agency and Upper Klamath Lake. Today, 17,000 acres have been preserved as part of the Upper Klamath Lake National Wildlife Refuge. Another 11,000 acres have been acquired for restoration. Irrigated agriculture is primarily pasture. Livestock are generally stocker cattle, who graze between April and November. Pasture condition is generally fair. Most livestock obtain water from streams and ditches. Irrigation water is diverted from streams or pumped from the lake. Most diversions do not have fish screens or devices to measure water. Although overall irrigation application efficiency is low, the additional water raises the water table and subirrigated pastures. Some acreages of hay and cereal crops are grown, and irrigation efficiencies are higher than for pasture. However, most require maintenance and re- leveling. Forestlands are primarily pine and mixed fir and hemlock. Most private lands in the subbasin are forest or rangelands, with approximately 80 percent used for grazing. More than half of the forest stands are significantly overstocked with trees. Wildlife habitat varies in condition. Of 70 total miles, 21 miles of streamside riparian areas are in good condition and another 12 miles are being restored. Upper Klamath Lake Subbasin Water & Wetlands: 76,568 Range: 2,404 Irrigated Pasture/ Grass Hay: 48,856 Forest/ Mixed: 100,311 Upper Klamath Lake Subbasin Agricultural Land Use/ Cover Irrigated Crop/ Alfalfa: 3,396 27 Resource Concerns Water quality in the Upper Klamath Lake is a major resource concern, affecting subbasin fish survival, with phosphorus loading as the greatest factor. The loss of wetland vegetation around the lake has also been linked to lower survival rates for endangered suckers. The lower reaches of the Wood River and Sevenmile Creek provide some rearing habitat for larval and juvenile suckers. The Wood River, Sevenmile Creek and their tributaries support populations of bull and interior redband trout. A highly valued “ catch and release” sport fishery occurs on the Wood River and several of its tributaries. There is significant interest in enhancing riparian habitat along these streams to protect and promote these fisheries. Conservation Accomplishments In the Upper Klamath Lake Subbasin during the last two years, some conservation progress has been made. With assistance from NRCS and local conservation districts, land managers have improved 12 acres of grazing lands and improved water quality and quantity on 12 acres of irrigated land. Several thousand more acres of wetland restoration are in the process of being planned or implemented around Upper Klamath Lake. Upper Klamath Lake Subbasin Land Ownership Private Lands 235,100 Public Lands 230,200 Total Land Area: 465,300 Irrigated Acres USBR Project: 0 Non- USBR: 52,300 Total: 52,300 28 Priority Conservation Opportunities Water Quality: The most effective conservation includes practices that restore riparian areas, improve grazing management and increase irrigation efficiency. This can be accomplished by either converting pastures to permanent wildlife habitat or by creating riparian pastures. While most pastures are being inefficiently irrigated, conditions do not warrant extensive changes from current flood irrigation systems since water is reused or enters the soil profile Water Storage: In the Upper Klamath Lake Subbasin, the potential for non- traditional water storage presents a unique conservation opportunity. Restoring drained wetlands, still farmed around Upper Klamath Lake, could produce positive benefits for all four resource concerns. By actively managing areas for both seasonal wetlands and farming, water can be both filtered to improve water quality and stored in wetland areas for future use. Upper Klamath Lake Subbasin Upper Klamath Lake Comparative Benefit of Applied Conservation Practices Water Demand Wildlife Habitat Water Storage Water Quality Riparian/ Wetland Agronomic Forest & Range Grazing Irrigation Conservation Practices Conservation Investment Projected Conservation Acres to be Treated* Irrigated Land ............ 42,500 Range & Forestland ... 36,300 Wildlife Habitat ........... 2,900 Estimated Installation Cost Irrigated Land .......................$ 10,462,000 Range & Forestland .........................$ 7,254,000 Wildlife Habitat .........................$ 4,113,000 Estimated Annual Operation, Maintenance & Management Cost Irrigated Land .........................$ 2,017,000 Range & Forestland ............................$ 308,000 Wildlife Habitat ............................$ 130,000 * Based on conservation need and projected participation rates. 29 Table of Contents Tupper Ansel Blake/ USFWS 30 Irrigated Crop 4,209 The Lost River Subbasin originates above Clear Lake and passes through several agricultural valleys, ending in Tulelake. The valley once supported a vast network of wet meadows and marshes. This subbasin covers approximately 1.2 million acres and is split from the Middle Lost River Subbasin near Olene. Irrigated agriculture generally occurs in the warmer valleys. Flood is the most common pasture irrigation method, with about 50 percent of the water coming from the USBR project. Pasture condition is fair, and most pastures have not been renovated or re- leveled for some time. Maintenance would increase the efficiencies of 60 to 80 percent of the systems. Alfalfa is customarily sprinkler- irrigated and well- managed. Although irrigation efficiencies are higher than for pasture, many sprinkler systems still need upgrading. Several irrigated crops are grown in the subbasin including cereal grains, potatoes, and strawberry plants. Forestland, range and pasture are grazed by livestock. Rangelands are comprised of juniper and sagebrush steppes. Forestlands are generally mixed conifer. Livestock operations include cow/ calf, stockers and dairies. Confined livestock operations are located throughout the subbasin. The location and duration of confinement may pose a potential risk to water quality. Seven dairies located within the subbasin have existing liquid and dry livestock waste storage facilities. Upper Lost River Subbasin Water & Wetlands 13,250 Range 72,630 Irrigated Pasture/ Grass Hay 41,352 Forest/ Mixed 204,420 Upper Lost River Subbasin Agricultural Land Use/ Cover Irrigated Alfalfa 38,943 31 Resource Concerns Wildlife habitat and water quality are two of the major resource concerns in the subbasin. High water temperatures are usually linked to lack of shade, irrigation return flow or other warm water inputs. As measured by total phosphorus, water quality appears to be gradually improving over the last 10 to 20 years. While agriculture is the dominant land use in this subbasin, other sources of phosphorus and other pollutants exist. Sewage treatment outfalls, on- site sewage disposal systems, wildlife, and natural inputs also contribute nutrients and other pollutants to the system. While historically the river had significant fish runs, it currently supports only a small population of Shortnose and Lost River suckers. Conservation Accomplishments In the Upper Lost River Subbasin during the last two years, significant conservation progress has been made. With assistance from NRCS and local conservation districts, land managers have improved resource conditions on 234 acres of croplands and 5,282 acres of grazing lands, and have improved their management of irrigation water on 5,596 acres of irrigated lands. In addition, 846 acres of riparian and wetland areas have been restored. Upper Lost River Subbasin Land Ownership Private Lands 407,500 Public Lands 771,300 Total Land Area: 1,178,800 Irrigated Acres USBR Project: 40,400 Non- USBR: 44,100 Total: 84,500 32 Priority Conservation Opportunities Water Quality: Rotating livestock through smaller pastures will increase forage production, reduce soil compaction and improve water quality. On cropland, integrated pest management, irrigation scheduling, increasing crop residue or installing filter strips will minimize risks associated with some pesticides used on cereal grains, potatoes, onions and other crops. Implementing practices like diverting clean water before it flows through livestock confinement areas near water sources, will reduce the risk of polluted runoff. Water Demand: On both surface-irrigated pastures and cropland areas, there are opportunities for land leveling or smoothing, lining or piping irrigation delivery ditches, upgrading irrigation systems and developing tailwater recovery systems to improve water use efficiency. Upper Lost River Subbasin Upper Lost River Comparative Benefit of Applied Conservation Practices Water Demand Wildlife Habitat Water Storage Water Quality Riparian/ Wetland Agronomic Forest & Range Grazing Irrigation Conservation Practices Conservation Investment Projected Conservation Acres to be Treated* Irrigated Land ............ 58,100 Range & Forestland 147,400 Wildlife Habitat ........... 1,200 Estimated Installation Cost Irrigated Land .......................$ 10,993,000 Range & Forestland .......................$ 20,397,000 Wildlife Habitat .........................$ 1,945,000 Estimated Annual Operation, Maintenance & Management Cost Irrigated Land .........................$ 3,667,000 Range & Forestland .........................$ 1,384,000 Wildlife Habitat ..............................$ 66,000 * Based on conservation need and projected participation rates. 33 Gary Kramer/ NRCS 34 The Middle Lost River Subbasin covers 454,500 acres and is the center of the USBR Klamath Project. Farms near Klamath Falls tend to be smaller, indicating part- time or hobby operations. The area includes 12 irrigation districts and leased lands on the Lower Klamath Wildlife Refuge that receive water supplied by the USBR Klamath Project. Public lands include the refuge, and parts of Modoc and Klamath national forests. Irrigated agriculture includes pasture, alfalfa, cereal grain, potatoes, onions and mint. Roughly 70 percent is irrigated with USBR- supplied water; the rest is obtained from groundwater, individual surface water rights or special USBR contracts. Many fields are either flood or sprinkler irrigated depending on the year and crop. Most farm irrigation diversions lack a means to measure water delivery. Livestock operations include several dairies and cattle feeding operations. Substantial range acreage is used for livestock grazing. Pasture condition is fair and most pastures have not been renovated or re- leveled for some time. Pastures associated with smaller livestock operations in and around Klamath Falls appear to be in the most need of improved pastures and irrigation systems. Wildlife habitat: Ten river miles are in relatively good riparian condition given the river is used for conveying irrigation water. Some 13 miles of stream lack adequate riparian vegetation and streambank protection. Middle Lost River Subbasin Water & Wetlands 10,766 Range 121,713 Irrigated Pasture/ Grass Hay 40,230 Middle Lost River Subbasin Agricultural Land Use/ Cover Irrigated Alfalfa 34,866 Irrigated Crop 41,837 35 Resource Concerns The primary concern is maintaining a reliable water supply that meets the needs of all users. Drought conditions and increased competition for available water have increased economic, social, political and environmental concerns and uncertainty over the future. Habitat and water quality are two additional major resource concerns in the subbasin. High water temperatures are usually linked to lack of shade, irrigation return flow or other warm water inputs. As measured by total phosphorus, water quality appears to be gradually improving. Agriculture is the dominant land use in this subbasin, but other pollutant sources exist. While the river had significant historic fish runs, it currently supports only a small sucker population. Conservation Accomplishments In the last two years, the Middle Lost River Subbasin has seen significant conservation progress. With assistance from NRCS and local conservation districts, land managers have improved the condition of natural resources on 489 acres of cropland and 3,521 grazing land acres. In addition, 564 acres of riparian and wetland areas have been restored, and water use efficiency has been increased on 3,731 acres of irrigated lands. Middle Lost River Subbasin Land Ownership Private Lands 272,900 Public Lands 181,600 Total Land Area: 454,500 Irrigated Acres USBR Project: 84,700 Non- USBR: 32,300 Total: 117,000 36 Priority Conservation Opportunities Water Demand: Providing irrigators with water measurement tools and training on irrigation scheduling would improve their ability to apply irrigation water more efficiently. Highly effective conservation measures on hay and cropland should focus on updating existing irrigation systems and improving irrigation water management. Water Quality: The use of grazing systems that rotate livestock through smaller pastures will increase forage production, reduce soil compaction and improve water quality. While fishery benefits from restoring riparian areas are minimal, streamside buffers will improve water quality and provide habitat for other wildlife. On cropland, integrated pest management, irrigation scheduling, increasing crop residue or installing filter strips will minimize risks associated with some pesticides used on cereal grains, potatoes, onions and other crops. Middle Lost River Subbasin Middle Lost River Subbasin Comparative Benefit of Applied Conservation Practices Water Demand Wildlife Habitat Water Storage Water Quality Riparian/ Wetland Agronomic Forest & Range Grazing Irrigation Conservation Practices Conservation Investment Projected Conservation Acres to be Treated* Irrigated Land ............ 80,400 Range & Forestland ... 85,200 Wildlife Habitat .............. 400 Estimated Installation Cost Irrigated Land .......................$ 18,859,000 Range & Forestland .........................$ 6,797,000 Wildlife Habitat ............................$ 195,000 Estimated Annual Operation, Maintenance & Management Cost Irrigated Land .........................$ 5,585,000 Range & Forestland ............................$ 902,000 Wildlife Habitat ................................$ 8,000 * Based on conservation need and projected participation rates. 37 38 The Tulelake Subbasin covers 296,600 acres, bordered by the J Canal and the Lava Beds National Monument. The Tulelake Irrigation District and the Tulelake National Wildlife Refuge receive water from the USBR Klamath Project. Tulelake is a remnant of historic Lake Modoc that once connected the subbasin with both Lower and Upper Klamath Lake. The Lost River watershed was once a closed basin. Runoff flowed into Tulelake and evaporated. Pumping plants and drains constructed as a part of the project have provided an outlet from Tulelake, which now functions as an open basin. Irrigated agriculture is generally supplied by the USBR. Alfalfa, grain, potatoes, onions, mint and pasture are the principal crops. Fields are flood or sprinkler irrigated depending on the year and crop. Often diversions lack devices to measure water delivery. Pasture condition is fair, and most have not been renovated for some time. Groundwater provides 40- 50 percent of water for irrigated pastures, and most excess water is reused. Rangeland is the other significant land use. Most ranches are cow/ calf operations that have winter holdings in the subbasin. Rangelands are generally encroached with juniper. Wildlife habitat along the Lost River has reeds and bullrush, providing some habitat for waterfowl and songbirds. Suckers have been located in the river and Tulelake; however, it is not known whether they are successfully reproducing. There are few opportunities to improve habitat along this heavily manipulated reach of the river. Tulelake Subbasin Water & Wetlands 13,285 Range 36,229 Irrigated Pasture/ Grass Hay 4,050 Tulelake Subbasin Agricultural Land Use/ Cover Irrigated Alfalfa 12,334 Irrigated Crop 48,481 Forest/ Mixed 4,492 39 Resource Concerns The Tulelake Subbasin is at the tail- end of the USBR Klamath Project. Irrigators depend on water- use decisions made by fellow irrigators and resource managers for their irrigation needs. Drought and increased competition for water leads to the primary resource concern in the basin - a reliable supply of water to meet agriculture, wildlife and other resource needs. Water quality deteriorates as it moves through the USBR project. As measured by total phosphorus, water quality appears to be gradually improving. Agriculture is the dominant land use in this subbasin, but other sources of phosphorus and other pollutants exist. The presence of ESA- listed suckers creates concerns for improving habitat and water quality. The two national wildlife refuges support large waterfowl populations. Farmland on the refuges is leased to farmers to supply grain for waterfowl and shorebirds. These populations depend on refuges, leased lands and adjacent farms during the fall and spring migratory periods. Both refuges depend upon tailwater from the USBR project to maintain their marshes and ponds. Conservation Accomplishments In the Tulelake Subbasin during the last two years, significant conservation progress has been made. With assistance from NRCS and local conservation districts, local land managers have improved the condition of natural resources on 72 cropland acres and 1,854 irrigated land acres, and have restored 21 acres of riparian and wetland areas. Tulelake Subbasin Land Ownership Private Lands 131,600 Public Lands 165,000 Total Land Area: 296,600 Irrigated Acres USBR Project: 62,600 Non- USBR: 2,200 Total: 64,800 40 Priority Conservation Opportunities Water Demand: On hay and croplands, upgrading existing irrigation systems and improving irrigation water management will decrease water demand. Subsurface drainage could be added before re- establishing alfalfa stands, permitting better control of water table and soil moisture levels. During years that alfalfa fields are rotated to grain, winter flooding or pre- season irrigation could be used to reduce water demand. Water Storage/ Yield: Adding subsurface drainage may be the most significant practice to implement on cropland acres. Subsurface drains would allow farmers to winter flood or pre-irrigate fields, thereby reducing their demand for water during the irrigation season. If pre- irrigated, farmers could grow a cereal crop even if water deliveries are cut off during drought years. In addition, juniper control on rangelands will yield additional water to meet downstream needs. Tulelake Subbasin Tulelake Comparative Benefit of Applied Conservation Practices Water Demand Wildlife Habitat Water Storage Water Quality Riparian/ Wetland Agronomic Forest & Range Grazing Irrigation Conservation Practices Conservation Investment Projected Conservation Acres to be Treated* Irrigated Land ............ 45,400 Range & Forestland ... 28,500 Wildlife Habitat ........... 1,700 Estimated Installation Cost Irrigated Land .......................$ 18,263,000 Range & Forestland .........................$ 1,741,000 Wildlife Habitat ............................$ 298,000 Estimated Annual Operation, Maintenance & Management Cost Irrigated Land .........................$ 2,590,000 Range & Forestland ............................$ 257,000 Wildlife Habitat ..............................$ 25,000 * Based on conservation need and projected participation rates. 41 Tupper Ansel Blake/ USFWS 42 The Butte Valley Subbasin lies southwest of Lower Klamath Lake. While part of the Upper Klamath Basin, it is an internal drainage basin with only an artificial outlet. Groundwater flows from west to east out of the subbasin under the Mahogany Mountains toward the lake. A channel and pump plant were built to remove floodwaters. This channel is used infrequently and for only short durations. The Klamath National Forest, Butte Valley National Grassland, and the Butte Valley Wildlife Area make up the majority of the public lands. Irrigated agriculture includes alfalfa hay as the predominate crop. Cereal grains, potatoes and strawberry plants are also grown. Crops are usually sprinkler irrigated, and sprinklers are well maintained. Few irrigators measure water applied or schedule irrigation. Cattle operations graze irrigated pastures and meadows scattered throughout the subbasin along with range and forestlands. Pastures are generally flood irrigated and are supplied by streams. Most farm irrigation diversions lack water measuring devices. Mixed conifer forests are found at higher elevations and are generally operated as industrial forests. Range sites are dominated by Western Juniper and are generally in poor condition. Wildlife habitat is generally wetlands in the state wildlife refuge or on national grasslands. Approximately 26 miles of streams on private lands have inadequate riparian vegetation. Butte Valley Subbasin Water & Wetlands 9,488 Range 73,891 Irrigated Pasture/ Grass Hay 10,355 Butte Valley Subbasin Agricultural Land Use/ Cover Irrigated Alfalfa 30,361 Irrigated Crop 11,490 Forest/ Mixed 52,031 43 Butte Valley Subbasin Resource Concerns The expense of deepening wells and pumping from deeper elevations for irrigation water is a major resource concern. Generally, streams in the upper portions of the subbasin support good populations of Brown and Rainbow trout. The Tulelake National Wildlife Refuge and Lower Klamath Lake National Wildlife Refuge support large populations of migratory and permanent waterfowl. Farmland on the refuges is leased to area farmers to supply grain for the waterfowl and shorebirds. The large bird populations depend on the refuges, leased lands and adjacent farms throughout the fall and spring migratory periods for habitat. Both refuges depend upon tailwater from the USBR project to maintain their marshes and ponds. Conservation Accomplishments In the Butte Valley Subbasin during the last two years, some conservation progress has been made. With assistance from NRCS and local conservation districts, local land managers have restored 27 acres of riparian and wetland areas in the last two years. Land Ownership Private Lands 188,400 Public Lands 199,700 Total Land Area: 388,100 Irrigated Acres USBR Project: 0 Non- USBR: 52,300 Total: 52,300 44 Butte Valley Subbasin Butte Valley Comparative Benefit of Applied Conservation Practices Water Demand Wildlife Habitat Water Storage Water Quality Riparian/ Wetland Agronomic Forest & Range Grazing Irrigation Conservation Practices Priority Conservation Opportunities Water Demand: Butte Valley is an internal drainage basin. Other than limited contributions to groundwater in the Upper Klamath Basin, reductions in water demand only benefit the subbasin. Sprinkler- irrigated hay, cereal crops and row crops dominate land use on the better soils. Highly effective conservation on hay and cropland should focus on improving the overall irrigation efficiency of existing systems. This can be accomplished by upgrading systems and scheduling irrigation. An estimated 40 percent of the existing systems would benefit from maintenance. On controlled flood irrigated pastures, there are opportunities for land leveling or smoothing, lining or piping delivery ditches, and recovering tailwater. Additional water savings and water quality benefits could be gained by converting existing surface irrigation to sprinklers if power is available and affordable. On rangelands, juniper control and improved grazing management are the primary conservation opportunities. Conservation Investment Projected Conservation Acres to be Treated* Irrigated Land ............ 35,000 Range & Forestland ... 49,400 Wildlife Habitat ................ 55 Estimated Installation Cost Irrigated Land .........................$ 6,652,000 Range & Forestland .........................$ 5,243,000 Wildlife Habitat ............................$ 109,000 Estimated Annual Operation, Maintenance & Management Cost Irrigated Land .........................$ 1,569,000 Range & Forestland ............................$ 625,000 Wildlife Habitat ................................$ 3,000 * Based on conservation need and projected participation rates. 45 46 The Upper Klamath River East Subbasin covers the Klamath River drainage between Iron Gate and Keno dams. Nearly half of the area is in public ownership. Iron Gate and Copco reservoirs are used extensively for recreational fishing, boating and camping. Whitewater rafting and kayaking are popular below the KC Boyle Dam. The KC Boyle, Copco and Iron Gate dams are used and regulated for power generation. Irrigated agriculture occurs on only 4,000 acres of pasture. Only a few isolated ranches are located in this subbasin. Cattle operations rotate grazing of irrigated pastures with significant acreage of grazed range and forest. Pastures are surface irrigated with a mix of controlled and flood irrigation. All irrigation water is diverted from the river or tributary streams. Most farm irrigation diversions lack devices to measure water. Even though overall irrigation application efficiency is low, the proximity of irrigated pastures to the river allows most excess water diverted to be reused downstream. Private forest and rangelands make up most of the private land, nearly all of which is used for livestock grazing. Much of the rangeland is in poor condition, with heavy juniper encroachment. More than half of the forest stands are overstocked with trees. Wildlife habitat along riparian areas is generally in good condition. Of the 12 miles of riparian areas surveyed, five would benefit from some restoration. Upper Klamath River East Subbasin Water & Wetlands 4,552 Forestlands 195,516 Irrigated Pasture/ Grass Hay 4,044 Upper Klamath River East Subbasin Agricultural Land Use/ Cover Range 52,366 47 Upper Klamath River East Subbasin Resource Concerns The need to increase water availability to downstream users is the main resource concern along this stretch of the river. Water withdrawals are insignificant along this stretch of the river. Salmon and steelhead are blocked at Iron Gate Dam from upstream passage. Several resident trout species exist, supporting a recreational fishery. Conservation Accomplishments In the Klamath River East Subbasin during the last two years, some conservation progress has been made. With assistance from NRCS and local conservation districts, land managers have improved the condition of natural resources on 56 acres of cropland, 332 acres of grazing land, and 560 acres of irrigated lands. They have also improved forestland health on 46 acres and have restored 924 acres of riparian and wetland areas. Land Ownership Private Lands 256,500 Public Lands 162,900 Total Land Area: 419,400 Irrigated Acres USBR Project: 0 Non- USBR: 4,000 Total: 4,000 48 Upper Klamath River East Subbasin Upper Klamath River East Comparative Benefit of Applied Conservation Practices Water Demand Wildlife Habitat Water Quality Riparian/ Wetland Agronomic Forest & Range Grazing Irrigation Conservation Practices Priority Conservation Opportunities Water Demand/ Yield: Juniper control, thinning forest stands, managing grazing lands by cross- fencing and providing off- stream water for livestock will improve hydrologic conditions, yielding more water to meet downstream needs. This will also improve forage production, habitat condition and water quality in area streams, as well as reduce the opportunity for a catastrophic fire. There are opportunities for land smoothing and tailwater recovery systems to improve overall irrigation efficiency and effectiveness. Additional water savings and water quality benefits would be gained by converting from surface irrigation to sprinklers if power is available and affordable. Conservation Investment Projected Conservation Acres to be Treated* Irrigated Land .............. 1,700 Range & Forestland ... 44,800 Wildlife Habitat .................. 5 Estimated Installation Cost Irrigated Land ............................$ 454,000 Range & Forestland .........................$ 4,769,000 Wildlife Habitat ..............................$ 13,000 Estimated Annual Operation, Maintenance & Management Cost Irrigated Land ..............................$ 86,000 Range & Forestland ............................$ 406,000 Wildlife Habitat .......................................$ 0 * Based on conservation need and projected participation rates. 49 USDA Nondiscrimination Statement “ The U. S. Department of Agriculture ( USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, and marital or family status. ( Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information ( Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at ( 202) 720- 2600 ( voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326- W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250- 9410, or call ( 202) 720- 5964 ( voice or TDD). USDA is an equal opportunity provider and employer.” 50 Upper Klamath Basin 51 Developed by the USDA Natural Resources Conservation Service September, 2004
-
ABSTRACT These reports document recreation use and estimate carrying capacities for the Klamath River in northern California. The river section studied runs from Interstate 5 near Yreka to the town of ...
Citation Citation
- Title:
- Recreational use and carrying capacity for the Klamath River
- Author:
- Shelby, Bo
- Year:
- 1984, 2005
ABSTRACT These reports document recreation use and estimate carrying capacities for the Klamath River in northern California. The river section studied runs from Interstate 5 near Yreka to the town of Orleans, and includes the lower sections of the Scott and Salmon River tributaries. A major highway runs along the river throughout the study area, with numerous; access points. The study covers the summer river running season and the fall salmon/ steel head fishing season. Because of the differences in time periods and activities, the study was done in two separate parts, each with a separate report. This document combines the two. The summer season report is presented first, followed by the fall season report. Each of these is preceeded by its own table of contents, list of tables, and summary of findings, and each is followed by its own appendices. The reports are separated by a colored page for easy reference. Data were collected by sampling, observation, and counting as well as a user questionnaire. Th? study presents a detailed description of river sections and documents recreational use by location and activity type. Carrying capacities are estimated for both river running and fishing activities. Estimates include discussions of ecological, facility, physical, and social carrying capacities, distinguishing descriptive and evaluative components. Limiting factors vary, depending on the activity and location. The more developed setting and the variety of activities and capacities distinguishes this project from earlier river capacity studies.